Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation

被引:0
|
作者
Zhu, Zhilin [1 ,2 ]
Hong, Xiaopeng [1 ,2 ]
Ma, Zhiheng [3 ,4 ,5 ]
Zhuang, Weijun [1 ,2 ]
Ma, Yaohui [1 ,5 ]
Dai, Yong [2 ]
Wang, Yaowei [1 ,2 ]
机构
[1] Harbin Inst Technol, Harbin, Peoples R China
[2] Pengcheng Lab, Shenzhen, Peoples R China
[3] Shenzhen Univ Adv Technol, Shenzhen, Peoples R China
[4] Guangdong Prov Key Lab Computil Microelect, Shenzhen, Peoples R China
[5] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Continual test-time adaptation; Unsupervised learning; Continual learning; Catastrophic forgetting; SHIFT;
D O I
10.1007/978-3-031-73007-8_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Continual Test-Time Adaptation (CTTA) involves adapting a pre-trained source model to continually changing unsupervised target domains. In this paper, we systematically analyze the challenges of this task: online environment, unsupervised nature, and the risks of error accumulation and catastrophic forgetting under continual domain shifts. To address these challenges, we reshape the online data buffering and organizing mechanism for CTTA. We propose an uncertainty-aware buffering approach to identify and aggregate significant samples with high certainty from the unsupervised, single-pass data stream. Based on this, we propose a graph-based class relation preservation constraint to overcome catastrophic forgetting. Furthermore, a pseudo-target replay objective is used to mitigate error accumulation. Extensive experiments demonstrate the superiority of our method in both segmentation and classification CTTA tasks. Code is available at https://github.com/z1358/OBAO.
引用
收藏
页码:415 / 433
页数:19
相关论文
共 50 条
  • [1] Continual Test-Time Domain Adaptation
    Wang, Qin
    Fink, Olga
    Van Gool, Luc
    Dai, Dengxin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7191 - 7201
  • [2] Navigating Continual Test-time Adaptation with Symbiosis Knowledge
    Yang, Xu
    Li, Mogi
    Yin, Jie
    Wei, Kun
    Deng, Cheng
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 5326 - 5334
  • [3] Multiple Teacher Model for Continual Test-Time Domain Adaptation
    Wang, Ran
    Zuo, Hua
    Fang, Zhen
    Lu, Jie
    ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I, 2024, 14471 : 304 - 314
  • [4] Compression and restoration: exploring elasticity in continual test-time adaptation
    Li, Jingwei
    Liu, Chengbao
    Bai, Xiwei
    Tan, Jie
    Chu, Jiaqi
    Wang, Yudong
    MACHINE LEARNING, 2025, 114 (04)
  • [5] Robust Mean Teacher for Continual and Gradual Test-Time Adaptation
    Doebler, Mario
    Marsden, Robert A.
    Yang, Bin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7704 - 7714
  • [6] Exploring Safety Supervision for Continual Test-time Domain Adaptation
    Yang, Xu
    Gu, Yanan
    Wei, Kun
    Deng, Cheng
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1649 - 1657
  • [7] Noise-Robust Continual Test-Time Domain Adaptation
    Yu, Zhiqi
    Li, Jingjing
    Du, Zhekai
    Li, Fengling
    Zhu, Lei
    Yang, Yang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2654 - 2662
  • [8] Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation
    Liu, Jiaming
    Xu, Ran
    Yang, Senqiao
    Zhang, Renrui
    Zhang, Qizhe
    Chen, Zehui
    Guo, Yandong
    Zhang, Shanghang
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 28653 - 28663
  • [9] NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation
    Gong, Taesik
    Jeong, Jongheon
    Kim, Taewon
    Kim, Yewon
    Shin, Jinwoo
    Lee, Sung-Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [10] Distribution-Aware Continual Test-Time Adaptation for Semantic Segmentation
    Ni, Jiayi
    Yang, Senqiao
    Xu, Ran
    Liu, Jiaming
    Li, Xiaoqi
    Jiao, Wenyu
    Chen, Zehui
    Liu, Yi
    Zhang, Shanghang
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 3044 - 3050