Continual Test-Time Domain Adaptation

被引:64
|
作者
Wang, Qin [1 ]
Fink, Olga [1 ,3 ]
Van Gool, Luc [1 ,4 ]
Dai, Dengxin [2 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] MPI Informat, Saarbrucken, Germany
[3] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[4] KU Lueven, Lueven, Belgium
基金
瑞士国家科学基金会;
关键词
D O I
10.1109/CVPR52688.2022.00706
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Test-time domain adaptation aims to adapt a source pretrained model to a target domain without using any source data. Existing works mainly consider the case where the target domain is static. However, real-world machine perception systems are running in non-stationary and continually changing environments where the target domain distribution can change over time. Existing methods, which are mostly based on self-training and entropy regularization, can suffer from these non-stationary environments. Due to the distribution shift over time in the target domain, pseudo-labels become unreliable. The noisy pseudolabels can further lead to error accumulation and catastrophic forgetting. To tackle these issues, we propose a continual test-time adaptation approach (CoTTA) which comprises two parts. Firstly, we propose to reduce the error accumulation by using weight-averaged and augmentation-averaged predictions which are often more accurate. On the other hand, to avoid catastrophic forgetting, we propose to stochastically restore a small part of the neurons to the source pre-trained weights during each iteration to help preserve source knowledge in the long-term. The proposed method enables the long-term adaptation for all parameters in the network. CoTTA is easy to implement and can be readily incorporated in off-the-shelf pre-trained models. We demonstrate the effectiveness of our approach on four classification tasks and a segmentation task for continual testtime adaptation, on which we outperform existing methods. Our code is available at https://qin.ee/cotta.
引用
收藏
页码:7191 / 7201
页数:11
相关论文
共 50 条
  • [1] Multiple Teacher Model for Continual Test-Time Domain Adaptation
    Wang, Ran
    Zuo, Hua
    Fang, Zhen
    Lu, Jie
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I, 2024, 14471 : 304 - 314
  • [2] Exploring Safety Supervision for Continual Test-time Domain Adaptation
    Yang, Xu
    Gu, Yanan
    Wei, Kun
    Deng, Cheng
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1649 - 1657
  • [3] Noise-Robust Continual Test-Time Domain Adaptation
    Yu, Zhiqi
    Li, Jingjing
    Du, Zhekai
    Li, Fengling
    Zhu, Lei
    Yang, Yang
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2654 - 2662
  • [4] Robust Mean Teacher for Continual and Gradual Test-Time Adaptation
    Doebler, Mario
    Marsden, Robert A.
    Yang, Bin
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7704 - 7714
  • [5] Improved Test-Time Adaptation for Domain Generalization
    Chen, Liang
    Zhang, Yong
    Song, Yibing
    Shan, Ying
    Liu, Lingqiao
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24172 - 24182
  • [6] NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation
    Gong, Taesik
    Jeong, Jongheon
    Kim, Taewon
    Kim, Yewon
    Shin, Jinwoo
    Lee, Sung-Ju
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] Domain Alignment Meets Fully Test-Time Adaptation
    Thopalli, Kowshik
    Turaga, Pavan
    Thiagarajan, Jayaraman J.
    [J]. Proceedings of Machine Learning Research, 2022, 189 : 1006 - 1021
  • [8] Test-time Domain Adaptation for Monocular Depth Estimation
    Li, Zhi
    Sh, Shaoshuai
    Schiele, Bernt
    Dai, Dengxin
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 4873 - 4879
  • [9] Uncertainty and Shape-Aware Continual Test-Time Adaptation for Cross-Domain Segmentation of Medical Images
    Zhu, Jiayi
    Bolsterlee, Bart
    Chow, Brian V. Y.
    Song, Yang
    Meijering, Erik
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 659 - 669
  • [10] RDumb: A simple approach that questions our progress in continual test-time adaptation
    Press, Ori
    Schneider, Steffen
    Kummerer, Matthias
    Bethge, Matthias
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,