Noise-Robust Continual Test-Time Domain Adaptation

被引:2
|
作者
Yu, Zhiqi [1 ]
Li, Jingjing [1 ,4 ]
Du, Zhekai [1 ]
Li, Fengling [2 ]
Zhu, Lei [3 ]
Yang, Yang [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Univ Technol Sydney, Sydney, NSW, Australia
[3] Shandong Normal Univ, Jinan, Peoples R China
[4] Inst Elect & Informat Engn UESTC Guangdong, Dongguan, Peoples R China
基金
中国国家自然科学基金;
关键词
transfer learning; domain adaptation; test-time; robust;
D O I
10.1145/3581783.3612071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Continual test-time domain adaptation (TTA) is a challenging topic in the field of source-free domain adaptation, which focuses on addressing cross-domain multimedia information during inference with a continuously changing data distribution. Previous methods have been found to lack noise robustness, leading to a significant increase in errors under strong noise. In this paper, we address the noise-robustness problem in continual TTA by offering three effective recipes to mitigate it. At the category level, we employ the Taylor cross-entropy loss to alleviate the low confidence category bias commonly associated with cross-entropy. At the sample level, we reweight the target samples based on uncertainty to prevent the model from overfitting on noisy samples. Finally, to reduce pseudo-label noise, we propose a soft ensemble negative learning mechanism to guide the model optimization using ensemble complementary pseudo labels. Our method achieves state-of-the-art performance on three widely used continual TTA datasets, particularly in the strong noise setting that we introduced.
引用
收藏
页码:2654 / 2662
页数:9
相关论文
共 50 条
  • [1] Continual Test-Time Domain Adaptation
    Wang, Qin
    Fink, Olga
    Van Gool, Luc
    Dai, Dengxin
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7191 - 7201
  • [2] Robust Mean Teacher for Continual and Gradual Test-Time Adaptation
    Doebler, Mario
    Marsden, Robert A.
    Yang, Bin
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7704 - 7714
  • [3] Multiple Teacher Model for Continual Test-Time Domain Adaptation
    Wang, Ran
    Zuo, Hua
    Fang, Zhen
    Lu, Jie
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I, 2024, 14471 : 304 - 314
  • [4] Exploring Safety Supervision for Continual Test-time Domain Adaptation
    Yang, Xu
    Gu, Yanan
    Wei, Kun
    Deng, Cheng
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1649 - 1657
  • [5] NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation
    Gong, Taesik
    Jeong, Jongheon
    Kim, Taewon
    Kim, Yewon
    Shin, Jinwoo
    Lee, Sung-Ju
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] Robust Test-Time Adaptation in Dynamic Scenarios
    Yuan, Longhui
    Xie, Binhui
    Li, Shuang
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15922 - 15932
  • [7] Improved Test-Time Adaptation for Domain Generalization
    Chen, Liang
    Zhang, Yong
    Song, Yibing
    Shan, Ying
    Liu, Lingqiao
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24172 - 24182
  • [8] Domain Alignment Meets Fully Test-Time Adaptation
    Thopalli, Kowshik
    Turaga, Pavan
    Thiagarajan, Jayaraman J.
    [J]. Proceedings of Machine Learning Research, 2022, 189 : 1006 - 1021
  • [9] Test-time Domain Adaptation for Monocular Depth Estimation
    Li, Zhi
    Sh, Shaoshuai
    Schiele, Bernt
    Dai, Dengxin
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 4873 - 4879
  • [10] Uncertainty and Shape-Aware Continual Test-Time Adaptation for Cross-Domain Segmentation of Medical Images
    Zhu, Jiayi
    Bolsterlee, Bart
    Chow, Brian V. Y.
    Song, Yang
    Meijering, Erik
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 659 - 669