NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation

被引:0
|
作者
Gong, Taesik [1 ]
Jeong, Jongheon [1 ]
Kim, Taewon [1 ]
Kim, Yewon [1 ]
Shin, Jinwoo [1 ]
Lee, Sung-Ju [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Test-time adaptation (TTA) is an emerging paradigm that addresses distributional shifts between training and testing phases without additional data acquisition or labeling cost; only unlabeled test data streams are used for continual model adaptation. Previous TTA schemes assume that the test samples are independent and identically distributed (i.i.d.), even though they are often temporally correlated (non-i.i.d.) in application scenarios, e.g., autonomous driving. We discover that most existing TTA methods fail dramatically under such scenarios. Motivated by this, we present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams. Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner. Our evaluation with various datasets, including real-world non-i.i.d. streams, demonstrates that the proposed robust TTA not only outperforms state-of-the-art TTA algorithms in the non-i.i.d. setting, but also achieves comparable performance to those algorithms under the i.i.d. assumption. Code is available at https://github.com/TaesikGong/NOTE.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Robust Mean Teacher for Continual and Gradual Test-Time Adaptation
    Doebler, Mario
    Marsden, Robert A.
    Yang, Bin
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7704 - 7714
  • [2] Noise-Robust Continual Test-Time Domain Adaptation
    Yu, Zhiqi
    Li, Jingjing
    Du, Zhekai
    Li, Fengling
    Zhu, Lei
    Yang, Yang
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2654 - 2662
  • [3] Continual Test-Time Domain Adaptation
    Wang, Qin
    Fink, Olga
    Van Gool, Luc
    Dai, Dengxin
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7191 - 7201
  • [4] Multiple Teacher Model for Continual Test-Time Domain Adaptation
    Wang, Ran
    Zuo, Hua
    Fang, Zhen
    Lu, Jie
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I, 2024, 14471 : 304 - 314
  • [5] Exploring Safety Supervision for Continual Test-time Domain Adaptation
    Yang, Xu
    Gu, Yanan
    Wei, Kun
    Deng, Cheng
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1649 - 1657
  • [6] Robust Test-Time Adaptation in Dynamic Scenarios
    Yuan, Longhui
    Xie, Binhui
    Li, Shuang
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15922 - 15932
  • [7] RDumb: A simple approach that questions our progress in continual test-time adaptation
    Press, Ori
    Schneider, Steffen
    Kummerer, Matthias
    Bethge, Matthias
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] SoTTA: Robust Test-Time Adaptation on Noisy Data Streams
    Gong, Taesik
    Kim, Yewon
    Lee, Taeckyung
    Chottananurak, Sorn
    Lee, Sung-Ju
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] Contrastive Test-Time Adaptation
    Chen, Dian
    Wang, Dequan
    Darrell, Trevor
    Ibrahimi, Sayna
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 295 - 305
  • [10] Robust Test-Time Adaptation for Zero-Shot Prompt Tuning
    Zhang, Ding-Chu
    Zhou, Zhi
    Li, Yu-Feng
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16714 - 16722