Multiple Teacher Model for Continual Test-Time Domain Adaptation

被引:0
|
作者
Wang, Ran [1 ]
Zuo, Hua [1 ]
Fang, Zhen [1 ]
Lu, Jie [1 ]
机构
[1] Univ Technol Sydney, Fac Engn & IT, Australian Artificial Intelligence Inst, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
Domain Adaptation; Test-time Adaptation;
D O I
10.1007/978-981-99-8388-9_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Test-time adaptation (TTA) without accessing the source data provides a practical means of addressing distribution changes in testing data by adjusting pre-trained models during the testing phase. However, previous TTA methods typically assume a static, independent target domain, which contrasts with the actual scenario of the target domain changing over time. Using previous TTA methods for long-term adaptation often leads to problems of error accumulation or catastrophic forgetting, as it relies on the capability of a single model, leading to performance degradation. To address these challenges, we propose a multiple teacher model approach (MTA) for continual test-time domain adaptation. Firstly, we reduce error accumulation and leverage the robustness of multiple models by implementing a weighted and averaged multiple teacher model that provides pseudo-labels for enhanced prediction accuracy. Then, we mitigate catastrophic forgetting by logging mutation gradients and randomly restoring some parameters to the weights of the pretrained model. Our comprehensive experiments demonstrate that MTA outperforms other state-of-the-art methods in continual time adaptation.
引用
收藏
页码:304 / 314
页数:11
相关论文
共 50 条
  • [1] Continual Test-Time Domain Adaptation
    Wang, Qin
    Fink, Olga
    Van Gool, Luc
    Dai, Dengxin
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7191 - 7201
  • [2] Robust Mean Teacher for Continual and Gradual Test-Time Adaptation
    Doebler, Mario
    Marsden, Robert A.
    Yang, Bin
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7704 - 7714
  • [3] Exploring Safety Supervision for Continual Test-time Domain Adaptation
    Yang, Xu
    Gu, Yanan
    Wei, Kun
    Deng, Cheng
    [J]. PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1649 - 1657
  • [4] Noise-Robust Continual Test-Time Domain Adaptation
    Yu, Zhiqi
    Li, Jingjing
    Du, Zhekai
    Li, Fengling
    Zhu, Lei
    Yang, Yang
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2654 - 2662
  • [5] Improved Test-Time Adaptation for Domain Generalization
    Chen, Liang
    Zhang, Yong
    Song, Yibing
    Shan, Ying
    Liu, Lingqiao
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24172 - 24182
  • [6] NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation
    Gong, Taesik
    Jeong, Jongheon
    Kim, Taewon
    Kim, Yewon
    Shin, Jinwoo
    Lee, Sung-Ju
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] Domain Alignment Meets Fully Test-Time Adaptation
    Thopalli, Kowshik
    Turaga, Pavan
    Thiagarajan, Jayaraman J.
    [J]. Proceedings of Machine Learning Research, 2022, 189 : 1006 - 1021
  • [8] Test-time Domain Adaptation for Monocular Depth Estimation
    Li, Zhi
    Sh, Shaoshuai
    Schiele, Bernt
    Dai, Dengxin
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 4873 - 4879
  • [9] Uncertainty and Shape-Aware Continual Test-Time Adaptation for Cross-Domain Segmentation of Medical Images
    Zhu, Jiayi
    Bolsterlee, Bart
    Chow, Brian V. Y.
    Song, Yang
    Meijering, Erik
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT III, 2023, 14222 : 659 - 669
  • [10] RDumb: A simple approach that questions our progress in continual test-time adaptation
    Press, Ori
    Schneider, Steffen
    Kummerer, Matthias
    Bethge, Matthias
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,