Compression and restoration: exploring elasticity in continual test-time adaptation

被引:0
|
作者
Li, Jingwei [1 ,2 ]
Liu, Chengbao [1 ]
Bai, Xiwei [1 ]
Tan, Jie [1 ,2 ]
Chu, Jiaqi [1 ,2 ]
Wang, Yudong [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
基金
北京市自然科学基金;
关键词
Test-time adaptation; Elasticity; Catastrophic forgetting; Exponential moving average;
D O I
10.1007/s10994-025-06739-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Test-time adaptation is a task that a pre-trained source model is updated during inference with given test data from target domains with different distributions. However, frequent updates in a long time without resetting the model will bring two main problems, i.e., error accumulation and catastrophic forgetting. Although some recent methods have alleviated the problems by designing new loss functions or update strategies, they are still very fragile to hyperparameters or suffer from storage burden. Besides, most methods treat each target domain equally, neglecting the characteristics of each target domain and the situation of the current model, which will mislead the update direction of the model. To address the above issues, we first leverage the mean cosine similarity per test batch between the features output by the source and updated models to measure the change of target domains. Then we summarize the elasticity of the mean cosine similarity to guide the model to update and restore adaptively. Motivated by this, we propose a frustratingly simple yet efficient method called Elastic-Test-time ENTropy Minimization (E-TENT) to dynamically adjust the mean cosine similarity based on the built relationship between it and the momentum coefficient. Combined with the extra three minimal improvements, E-TENT exhibits significant performance gains and strong robustness on CIFAR10-C, CIFAR100-C and ImageNet-C along with various practical scenarios.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Exploring Safety Supervision for Continual Test-time Domain Adaptation
    Yang, Xu
    Gu, Yanan
    Wei, Kun
    Deng, Cheng
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1649 - 1657
  • [2] Continual Test-Time Domain Adaptation
    Wang, Qin
    Fink, Olga
    Van Gool, Luc
    Dai, Dengxin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7191 - 7201
  • [3] Navigating Continual Test-time Adaptation with Symbiosis Knowledge
    Yang, Xu
    Li, Mogi
    Yin, Jie
    Wei, Kun
    Deng, Cheng
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 5326 - 5334
  • [4] Multiple Teacher Model for Continual Test-Time Domain Adaptation
    Wang, Ran
    Zuo, Hua
    Fang, Zhen
    Lu, Jie
    ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I, 2024, 14471 : 304 - 314
  • [5] Robust Mean Teacher for Continual and Gradual Test-Time Adaptation
    Doebler, Mario
    Marsden, Robert A.
    Yang, Bin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7704 - 7714
  • [6] Noise-Robust Continual Test-Time Domain Adaptation
    Yu, Zhiqi
    Li, Jingjing
    Du, Zhekai
    Li, Fengling
    Zhu, Lei
    Yang, Yang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2654 - 2662
  • [7] Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation
    Liu, Jiaming
    Xu, Ran
    Yang, Senqiao
    Zhang, Renrui
    Zhang, Qizhe
    Chen, Zehui
    Guo, Yandong
    Zhang, Shanghang
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 28653 - 28663
  • [8] NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation
    Gong, Taesik
    Jeong, Jongheon
    Kim, Taewon
    Kim, Yewon
    Shin, Jinwoo
    Lee, Sung-Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [9] Distribution-Aware Continual Test-Time Adaptation for Semantic Segmentation
    Ni, Jiayi
    Yang, Senqiao
    Xu, Ran
    Liu, Jiaming
    Li, Xiaoqi
    Jiao, Wenyu
    Chen, Zehui
    Liu, Yi
    Zhang, Shanghang
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 3044 - 3050
  • [10] Exploring Motion Cues for Video Test-Time Adaptation
    Zeng, Runhao
    Deng, Qi
    Xu, Huixuan
    Niu, Shuaicheng
    Chen, Jian
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1840 - 1850