Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation

被引:0
|
作者
Zhu, Zhilin [1 ,2 ]
Hong, Xiaopeng [1 ,2 ]
Ma, Zhiheng [3 ,4 ,5 ]
Zhuang, Weijun [1 ,2 ]
Ma, Yaohui [1 ,5 ]
Dai, Yong [2 ]
Wang, Yaowei [1 ,2 ]
机构
[1] Harbin Inst Technol, Harbin, Peoples R China
[2] Pengcheng Lab, Shenzhen, Peoples R China
[3] Shenzhen Univ Adv Technol, Shenzhen, Peoples R China
[4] Guangdong Prov Key Lab Computil Microelect, Shenzhen, Peoples R China
[5] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Continual test-time adaptation; Unsupervised learning; Continual learning; Catastrophic forgetting; SHIFT;
D O I
10.1007/978-3-031-73007-8_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Continual Test-Time Adaptation (CTTA) involves adapting a pre-trained source model to continually changing unsupervised target domains. In this paper, we systematically analyze the challenges of this task: online environment, unsupervised nature, and the risks of error accumulation and catastrophic forgetting under continual domain shifts. To address these challenges, we reshape the online data buffering and organizing mechanism for CTTA. We propose an uncertainty-aware buffering approach to identify and aggregate significant samples with high certainty from the unsupervised, single-pass data stream. Based on this, we propose a graph-based class relation preservation constraint to overcome catastrophic forgetting. Furthermore, a pseudo-target replay objective is used to mitigate error accumulation. Extensive experiments demonstrate the superiority of our method in both segmentation and classification CTTA tasks. Code is available at https://github.com/z1358/OBAO.
引用
收藏
页码:415 / 433
页数:19
相关论文
共 50 条
  • [21] Multi-Modal Continual Test-Time Adaptation for 3D Semantic Segmentation
    Cao, Haozhi
    Xu, Yuecong
    Yang, Jianfei
    Yin, Pengyu
    Yuan, Shenghai
    Xie, Lihua
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18763 - 18773
  • [22] SoTTA: Robust Test-Time Adaptation on Noisy Data Streams
    Gong, Taesik
    Kim, Yewon
    Lee, Taeckyung
    Chottananurak, Sorn
    Lee, Sung-Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [23] AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation
    Sojka, Damian
    Cygert, Sebastian
    Twardowski, Bartlomiej
    Trzcinski, Tomasz
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 3483 - 3487
  • [24] Self-supervised Test-time Adaptation on Video Data
    Azimi, Fatemeh
    Palacio, Sebastian
    Raue, Federico
    Hees, Joern
    Bertinetto, Luca
    Dengel, Andreas
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 2603 - 2612
  • [25] Human Motion Forecasting in Dynamic Domain Shifts: A Homeostatic Continual Test-Time Adaptation Framework
    Cuil, Qiongjie
    Sun, Huaijiang
    Li, Weiqing
    Lu, Jianfeng
    Li, Bin
    COMPUTER VISION - ECCV 2024, PT XXXI, 2025, 15089 : 435 - 453
  • [26] Train/Test-Time Adaptation with Retrieval
    Zancato, Luca
    Achille, Alessandro
    Liu, Tian Yu
    Trager, Matthew
    Perera, Pramuditha
    Soatto, Stefano
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15911 - 15921
  • [27] TEA: Test-time Energy Adaptation
    Yuan, Yige
    Xu, Bingbing
    Hou, Liang
    Sun, Fei
    Shen, Huawei
    Cheng, Xueqi
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 23901 - 23911
  • [28] Online Subloop Search via Uncertainty Quantization for Efficient Test-Time Adaptation
    Lee, Jae-Hong
    Lee, Sang-Eon
    Kim, Dong-Hyun
    Kim, DoHee
    Chang, Joon-Hyuk
    INTERSPEECH 2024, 2024, : 2880 - 2884
  • [29] Online Seizure Prediction via Fine-Tuning and Test-Time Adaptation
    Mao, Tingting
    Li, Chang
    Song, Rencheng
    Xu, Guoping
    Chen, Xun
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 20784 - 20796
  • [30] EcoTTA: Memory-Efficient Continual Test-time Adaptation via Self-distilled Regularization
    Song, Junha
    Lee, Jungsoo
    Kweon, In So
    Choi, Sungha
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11920 - 11929