Quantile Regression under Truncated, Censored and Dependent Assumptions

被引:0
|
作者
Changsheng LIU [1 ]
Yunjiao LU [2 ]
Sili NIU [2 ]
机构
[1] School of Mathematics and Physics, Henan University of Urban Construction
[2] School of Mathematical Sciences, Tongji
关键词
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
摘要
In this paper, we focus on the problem of nonparametric quantile regression with left-truncated and right-censored data. Based on Nadaraya-Watson(NW) Kernel smoother and the technique of local linear(LL) smoother, we construct the NW and LL estimators of the conditional quantile. Under strong mixing assumptions, we establish asymptotic representation and asymptotic normality of the estimators. Finite sample behavior of the estimators is investigated via simulation, and a real data example is used to illustrate the application of the proposed methods.
引用
收藏
页码:479 / 497
页数:19
相关论文
共 50 条
  • [31] Censored quantile regression for residual lifetimes
    Kim, Mi-Ok
    Zhou, Mai
    Jeong, Jong-Hyeon
    LIFETIME DATA ANALYSIS, 2012, 18 (02) : 177 - 194
  • [32] Bayesian Quantile Regression for Censored Data
    Reich, Brian J.
    Smith, Luke B.
    BIOMETRICS, 2013, 69 (03) : 651 - 660
  • [33] A quantile regression estimator for censored data
    Leng, Chenlei
    Tong, Xingwei
    BERNOULLI, 2013, 19 (01) : 344 - 361
  • [34] Locally Weighted Censored Quantile Regression
    Wang, Huixia Judy
    Wang, Lan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) : 1117 - 1128
  • [35] Partially linear censored quantile regression
    Tereza Neocleous
    Stephen Portnoy
    Lifetime Data Analysis, 2009, 15 : 357 - 378
  • [36] Regularized linear censored quantile regression
    Son, Minjeong
    Choi, Taehwa
    Shin, Seung Jun
    Jung, Yoonsuh
    Choi, Sangbum
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 589 - 607
  • [37] Robust Inference for Censored Quantile Regression
    Tang, Yuanyuan
    Wang, Xiaorui
    Zhu, Jianming
    Lin, Hongmei
    Tang, Yanlin
    Tong, Tiejun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024,
  • [38] Partially linear censored quantile regression
    Neocleous, Tereza
    Portnoy, Stephen
    LIFETIME DATA ANALYSIS, 2009, 15 (03) : 357 - 378
  • [39] Quantile regression with doubly censored data
    Lin, Guixian
    He, Xuming
    Portnoy, Stephen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 797 - 812
  • [40] Regularized linear censored quantile regression
    Minjeong Son
    Taehwa Choi
    Seung Jun Shin
    Yoonsuh Jung
    Sangbum Choi
    Journal of the Korean Statistical Society, 2022, 51 : 589 - 607