Quantile Regression under Truncated, Censored and Dependent Assumptions

被引:0
|
作者
Changsheng LIU [1 ]
Yunjiao LU [2 ]
Sili NIU [2 ]
机构
[1] School of Mathematics and Physics, Henan University of Urban Construction
[2] School of Mathematical Sciences, Tongji
关键词
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
摘要
In this paper, we focus on the problem of nonparametric quantile regression with left-truncated and right-censored data. Based on Nadaraya-Watson(NW) Kernel smoother and the technique of local linear(LL) smoother, we construct the NW and LL estimators of the conditional quantile. Under strong mixing assumptions, we establish asymptotic representation and asymptotic normality of the estimators. Finite sample behavior of the estimators is investigated via simulation, and a real data example is used to illustrate the application of the proposed methods.
引用
收藏
页码:479 / 497
页数:19
相关论文
共 50 条
  • [41] Computational aspects of censored quantile regression
    Fitzenberger, B
    L(1)-STATISTICAL PROCEDURES AND RELATED TOPICS, 1997, 31 : 171 - 186
  • [42] Censored quantile regression for residual lifetimes
    Mi-Ok Kim
    Mai Zhou
    Jong-Hyeon Jeong
    Lifetime Data Analysis, 2012, 18 : 177 - 194
  • [43] CENSORED QUANTILE REGRESSION WITH VARYING COEFFICIENTS
    Yin, Guosheng
    Zeng, Donglin
    Li, Hui
    STATISTICA SINICA, 2014, 24 (02) : 855 - 870
  • [44] Efficient Estimation for Censored Quantile Regression
    Lee, Sze Ming
    Sit, Tony
    Xu, Gongjun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2762 - 2775
  • [45] Moment estimation for censored quantile regression
    Wang, Qian
    Chen, Songnian
    ECONOMETRIC REVIEWS, 2021, 40 (09) : 815 - 829
  • [46] Quantile regression for interval censored data
    Zhou, Xiuqing
    Feng, Yanqin
    Du, Xiuli
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (08) : 3848 - 3863
  • [47] HIGH DIMENSIONAL CENSORED QUANTILE REGRESSION
    Zheng, Qi
    Peng, Limin
    He, Xuming
    ANNALS OF STATISTICS, 2018, 46 (01): : 308 - 343
  • [48] Quantile Regression for Doubly Censored Data
    Ji, Shuang
    Peng, Limin
    Cheng, Yu
    Lai, HuiChuan
    BIOMETRICS, 2012, 68 (01) : 101 - 112
  • [49] Quantile process for left truncated and right censored data
    Szeman Tse
    Annals of the Institute of Statistical Mathematics, 2005, 57 : 61 - 69
  • [50] Quantile process for left truncated and right censored data
    Tse, S
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2005, 57 (01) : 61 - 69