HIGH DIMENSIONAL CENSORED QUANTILE REGRESSION

被引:19
|
作者
Zheng, Qi [1 ]
Peng, Limin [2 ]
He, Xuming [3 ]
机构
[1] Univ Louisville, Dept Bioinformat & Biostat, Louisville, KY 40242 USA
[2] Emory Univ, Dept Biostat & Bioinformat, 1518 Clifton Rd NE, Atlanta, GA 30322 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
ANNALS OF STATISTICS | 2018年 / 46卷 / 01期
基金
中国国家自然科学基金;
关键词
High dimensional survival data; varying covariate effects; censored quantile regression; VARIABLE SELECTION; SURVIVAL ANALYSIS; ADAPTIVE LASSO; SHRINKAGE; MODEL;
D O I
10.1214/17-AOS1551
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Censored quantile regression (CQR) has emerged as a useful regression tool for survival analysis. Some commonly used CQR methods can be characterized by stochastic integral-based estimating equations in a sequential manner across quantile levels. In this paper, we analyze CQR in a high dimensional setting where the regression functions over a continuum of quantile levels are of interest. We propose a two-step penalization procedure, which accommodates stochastic integral based estimating equations and address the challenges due to the recursive nature of the procedure. We establish the uniform convergence rates for the proposed estimators, and investigate the properties on weak convergence and variable selection. We conduct numerical studies to confirm our theoretical findings and illustrate the practical utility of our proposals.
引用
收藏
页码:308 / 343
页数:36
相关论文
共 50 条
  • [1] Inference for High-Dimensional Censored Quantile Regression
    Fei, Zhe
    Zheng, Qi
    Hong, Hyokyoung G.
    Li, Yi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 898 - 912
  • [2] Variable selection in censored quantile regression with high dimensional data
    Yali Fan
    Yanlin Tang
    Zhongyi Zhu
    [J]. Science China Mathematics, 2018, 61 : 641 - 658
  • [3] Variable selection in censored quantile regression with high dimensional data
    Yali Fan
    Yanlin Tang
    Zhongyi Zhu
    [J]. Science China Mathematics, 2018, 61 (04) : 641 - 658
  • [4] Variable selection in censored quantile regression with high dimensional data
    Fan, Yali
    Tang, Yanlin
    Zhu, Zhongyi
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (04) : 641 - 658
  • [5] Variable screening for ultrahigh dimensional censored quantile regression
    Pan, Jing
    Zhang, Shucong
    Zhou, Yong
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (03) : 395 - 413
  • [6] Distributed Censored Quantile Regression
    Sit, Tony
    Xing, Yue
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1685 - 1697
  • [7] Censored quantile regression redux
    Koenker, Roger
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (06): : 1 - 25
  • [8] Envelopes for censored quantile regression
    Zhao, Yue
    Van Keilegom, Ingrid
    Ding, Shanshan
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (04) : 1562 - 1585
  • [9] Censored Quantile Regression Forest
    Li, Alexander Hanbo
    Bradic, Jelena
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2109 - 2118
  • [10] Weighted censored quantile regression
    Vasudevan, Chithran
    Variyath, Asokan Mulayath
    Fan, Zhaozhi
    [J]. SURVEY METHODOLOGY, 2019, 45 (01) : 127 - 144