HIGH DIMENSIONAL CENSORED QUANTILE REGRESSION

被引:19
|
作者
Zheng, Qi [1 ]
Peng, Limin [2 ]
He, Xuming [3 ]
机构
[1] Univ Louisville, Dept Bioinformat & Biostat, Louisville, KY 40242 USA
[2] Emory Univ, Dept Biostat & Bioinformat, 1518 Clifton Rd NE, Atlanta, GA 30322 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
ANNALS OF STATISTICS | 2018年 / 46卷 / 01期
基金
中国国家自然科学基金;
关键词
High dimensional survival data; varying covariate effects; censored quantile regression; VARIABLE SELECTION; SURVIVAL ANALYSIS; ADAPTIVE LASSO; SHRINKAGE; MODEL;
D O I
10.1214/17-AOS1551
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Censored quantile regression (CQR) has emerged as a useful regression tool for survival analysis. Some commonly used CQR methods can be characterized by stochastic integral-based estimating equations in a sequential manner across quantile levels. In this paper, we analyze CQR in a high dimensional setting where the regression functions over a continuum of quantile levels are of interest. We propose a two-step penalization procedure, which accommodates stochastic integral based estimating equations and address the challenges due to the recursive nature of the procedure. We establish the uniform convergence rates for the proposed estimators, and investigate the properties on weak convergence and variable selection. We conduct numerical studies to confirm our theoretical findings and illustrate the practical utility of our proposals.
引用
收藏
页码:308 / 343
页数:36
相关论文
共 50 条
  • [41] Quantile based dimension reduction in censored regression
    Yan, Mei
    Kong, Efang
    Xia, Yingcun
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 142 (142)
  • [42] Single index quantile regression for censored data
    Eliana Christou
    Michael G. Akritas
    [J]. Statistical Methods & Applications, 2019, 28 : 655 - 678
  • [43] Interval-Censored Linear Quantile Regression
    Choi, Taehwa
    Park, Seohyeon
    Cho, Hunyong
    Choi, Sangbum
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [44] An alternative estimator for the censored quantile regression model
    Buchinsky, M
    Hahn, JY
    [J]. ECONOMETRICA, 1998, 66 (03) : 653 - 671
  • [45] Nonparametric quantile regression for twice censored data
    Volgushew, Stanislav
    Dette, Holger
    [J]. BERNOULLI, 2013, 19 (03) : 748 - 779
  • [46] Comparison of quantile regression curves with censored data
    Lorenzo Tedesco
    Ingrid Van Keilegom
    [J]. TEST, 2023, 32 : 829 - 864
  • [47] An Adapted Loss Function for Censored Quantile Regression
    De Backer, Mickael
    Ghouch, Anouar El
    Van Keilegom, Ingrid
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) : 1126 - 1137
  • [48] Single index quantile regression for censored data
    Christou, Eliana
    Akritas, Michael G.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2019, 28 (04): : 655 - 678
  • [49] Censored quantile regression with partially functional effects
    Qian, Jing
    Peng, Limin
    [J]. BIOMETRIKA, 2010, 97 (04) : 839 - 850
  • [50] Smoothed quantile regression for censored residual life
    Kim, Kyu Hyun
    Caplan, Daniel J.
    Kang, Sangwook
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (02) : 1001 - 1022