Single index quantile regression for censored data

被引:2
|
作者
Christou, Eliana [1 ]
Akritas, Michael G. [2 ]
机构
[1] Univ North Carolina Charlotte, Dept Math & Stat, 9201 Univ City Blvd, Charlotte, NC 28223 USA
[2] Penn State Univ, Dept Stat, State Coll, PA 16801 USA
来源
STATISTICAL METHODS AND APPLICATIONS | 2019年 / 28卷 / 04期
关键词
Censored data; Dimension reduction; Index model; Quantile regression; MODELS;
D O I
10.1007/s10260-019-00450-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression (QR) has become a popular method of data analysis, especially when the error term is heteroscedastic. It is particularly relevant for the analysis of censored survival data as an alternative to proportional hazards and the accelerated failure time models. Such data occur frequently in biostatistics, environmental sciences, social sciences and econometrics. There is a large body of work for linear/nonlinear QR models for censored data, but it is only recently that the single index quantile regression (SIQR) model has received some attention. However, the only existing method for fitting the SIQR model for censored data uses an iterative algorithm and no asymptotic theory for the resulting estimator of the parametric component is given. We propose a non-iterative estimation algorithm and derive the asymptotic distribution of the proposed estimator under heteroscedasticity. Results from simulation studies evaluating the finite sample performance of the proposed estimator are reported.
引用
收藏
页码:655 / 678
页数:24
相关论文
共 50 条
  • [1] Single index quantile regression for censored data
    Eliana Christou
    Michael G. Akritas
    [J]. Statistical Methods & Applications, 2019, 28 : 655 - 678
  • [2] ASYMPTOTIC NORMALITY SINGLE FUNCTIONAL INDEX QUANTILE REGRESSION UNDER RANDOMLY CENSORED DATA
    Dib, Abdessamad
    Hamri, Mohamed Mehdi
    Rabhi, Abbes
    [J]. JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 845 - 864
  • [3] Single index quantile regression for heteroscedastic data
    Christou, Eliana
    Akritas, Michael G.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 150 : 169 - 182
  • [4] Bayesian Quantile Regression for Censored Data
    Reich, Brian J.
    Smith, Luke B.
    [J]. BIOMETRICS, 2013, 69 (03) : 651 - 660
  • [5] A quantile regression estimator for censored data
    Leng, Chenlei
    Tong, Xingwei
    [J]. BERNOULLI, 2013, 19 (01) : 344 - 361
  • [6] Quantile regression with doubly censored data
    Lin, Guixian
    He, Xuming
    Portnoy, Stephen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 797 - 812
  • [7] Quantile regression for interval censored data
    Zhou, Xiuqing
    Feng, Yanqin
    Du, Xiuli
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (08) : 3848 - 3863
  • [8] Quantile Regression for Doubly Censored Data
    Ji, Shuang
    Peng, Limin
    Cheng, Yu
    Lai, HuiChuan
    [J]. BIOMETRICS, 2012, 68 (01) : 101 - 112
  • [9] Transformed Dynamic Quantile Regression on Censored Data
    Chu, Chi Wing
    Sit, Tony
    Xu, Gongjun
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (534) : 874 - 886
  • [10] Comparison of quantile regression curves with censored data
    Tedesco, Lorenzo
    Van Keilegom, Ingrid
    [J]. TEST, 2023, 32 (03) : 829 - 864