ASYMPTOTIC NORMALITY SINGLE FUNCTIONAL INDEX QUANTILE REGRESSION UNDER RANDOMLY CENSORED DATA

被引:0
|
作者
Dib, Abdessamad [1 ]
Hamri, Mohamed Mehdi [2 ]
Rabhi, Abbes [3 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Lab Math, Sidi Bel Abbes 22000, Algeria
[2] Univ Djillali Liabes Sidi Bel Abbes, ESI, LABRI, Sidi Bel Abbes 22000, Algeria
[3] Univ Djillali Liabes Sidi Bel Abbes, Sidi Bel Abbes 22000, Algeria
来源
关键词
Asymptotic normality; conditional quantile; functional single-index process; functional random variable; nonparametric estimation; small ball probability; ESTIMATOR;
D O I
10.46939/J.Sci.Arts-22.4-a07
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main objective of this paper is to estimate non-parametrically the quantiles of a conditional distribution based on the single-index model in the censorship model when the sample is considered as an independent and identically distributed (i.i.d.) random variables. First of all, a kernel type estimator for the conditional cumulative distribution function (cond-cdf) is introduced. Afterwards, we give an estimation of the quantiles by inverting this estimated cond-cdf, the asymptotic properties are stated when the observations are linked with a single-index structure. Finally, a simulation study is carried out to evaluate the performance of this estimate.
引用
收藏
页码:845 / 864
页数:20
相关论文
共 50 条