Randomly censored quantile regression estimation using functional stationary ergodic data

被引:27
|
作者
Chaouch, Mohamed [1 ]
Khardani, Salah [2 ]
机构
[1] Univ Reading, Dept Math & Stat, Reading, Berks, England
[2] Univ Lille, ULCO, LMPA, Lille, France
关键词
conditional quantile; censored data; asymptotic normality; functional data; ergodic processes; strong consistency; peak load forecasting; 62P30; 62M10; 62G20; 62N01; ASYMPTOTIC PROPERTIES; TIME-SERIES; PREDICTION;
D O I
10.1080/10485252.2014.982651
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates the conditional quantile estimation of a randomly censored scalar response variable given a functional random covariate (i.e. valued in some infinite-dimensional space) whenever a stationary ergodic data are considered. A kernel-type estimator of the conditional quantile function is introduced. Then, a strong consistency rate as well as the asymptotic distribution of the estimator are established under mild assumptions. A simulation study is considered to show the performance of the proposed estimator. An application to the electricity peak demand prediction using censored smart meter data is also provided.
引用
收藏
页码:65 / 87
页数:23
相关论文
共 50 条
  • [1] The kernel regression estimation for randomly censored functional stationary ergodic data
    Ling, Nengxiang
    Liu, Yang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (17) : 8557 - 8574
  • [2] Composite quantile estimation in partially functional linear regression model with randomly censored responses
    Wu, Chengxin
    Ling, Nengxiang
    Vieu, Philippe
    Fan, Guoliang
    [J]. TEST, 2024,
  • [3] Variable selection and coefficient estimation via composite quantile regression with randomly censored data
    Jiang, Rong
    Qian, Weimin
    Zhou, Zhangong
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (02) : 308 - 317
  • [4] ASYMPTOTIC NORMALITY SINGLE FUNCTIONAL INDEX QUANTILE REGRESSION UNDER RANDOMLY CENSORED DATA
    Dib, Abdessamad
    Hamri, Mohamed Mehdi
    Rabhi, Abbes
    [J]. JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 845 - 864
  • [5] A weighted quantile regression for nonlinear models with randomly censored data
    Feng, Hailin
    Luo, Qianqian
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (18) : 4167 - 4179
  • [6] Nonparametric M-estimation for right censored regression model with stationary ergodic data
    Chaouch, Mohamed
    Laib, Naamane
    Said, Elias Ould
    [J]. STATISTICAL METHODOLOGY, 2016, 33 : 234 - 255
  • [7] Nonparametric estimation of quantile functions for randomly right censored data
    Soonphill Hong
    Jinmi Kim
    Choongrak Kim
    [J]. Journal of the Korean Statistical Society, 2013, 42 : 169 - 176
  • [8] Nonparametric estimation of quantile functions for randomly right censored data
    Hong, Soonphill
    Kim, Jinmi
    Kim, Choongrak
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (02) : 169 - 176
  • [9] Nonparametric regression estimation for functional stationary ergodic data with missing at random
    Ling, Nengxiang
    Liang, Longlong
    Vieu, Philippe
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 162 : 75 - 87
  • [10] Functional Censored Quantile Regression
    Jiang, Fei
    Cheng, Qing
    Yin, Guosheng
    Shen, Haipeng
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 931 - 944