A quantile regression estimator for censored data

被引:34
|
作者
Leng, Chenlei [1 ]
Tong, Xingwei [2 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Sg 117546, Singapore
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
accelerated failure time model; censored quantile regression; Kaplan-Meier estimate; quantile regression; FAILURE TIME MODEL; MEDIAN REGRESSION; SURVIVAL ANALYSIS;
D O I
10.3150/11-BEJ388
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a censored quantile regression estimator motivated by unbiased estimating equations. Under the usual conditional independence assumption of the survival time and the censoring time given the covariates, we show that the proposed estimator is consistent and asymptotically normal. We develop an efficient computational algorithm which uses existing quantile regression code. As a result, bootstrap-type inference can be efficiently implemented. We illustrate the finite-sample performance of the proposed method by simulation studies and analysis of a survival data set.
引用
收藏
页码:344 / 361
页数:18
相关论文
共 50 条
  • [1] A quantile regression estimator for interval-censored data
    Frumento, Paolo
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2023, 19 (01): : 81 - 96
  • [2] An alternative estimator for the censored quantile regression model
    Buchinsky, M
    Hahn, JY
    [J]. ECONOMETRICA, 1998, 66 (03) : 653 - 671
  • [3] Bayesian Quantile Regression for Censored Data
    Reich, Brian J.
    Smith, Luke B.
    [J]. BIOMETRICS, 2013, 69 (03) : 651 - 660
  • [4] Quantile regression with doubly censored data
    Lin, Guixian
    He, Xuming
    Portnoy, Stephen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 797 - 812
  • [5] Quantile Regression for Doubly Censored Data
    Ji, Shuang
    Peng, Limin
    Cheng, Yu
    Lai, HuiChuan
    [J]. BIOMETRICS, 2012, 68 (01) : 101 - 112
  • [6] Quantile regression for interval censored data
    Zhou, Xiuqing
    Feng, Yanqin
    Du, Xiuli
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (08) : 3848 - 3863
  • [7] An informative subset-based estimator for censored quantile regression
    Yanlin Tang
    Huixia Judy Wang
    Xuming He
    Zhongyi Zhu
    [J]. TEST, 2012, 21 : 635 - 655
  • [8] An informative subset-based estimator for censored quantile regression
    Tang, Yanlin
    Wang, Huixia Judy
    He, Xuming
    Zhu, Zhongyi
    [J]. TEST, 2012, 21 (04) : 635 - 655
  • [9] Transformed Dynamic Quantile Regression on Censored Data
    Chu, Chi Wing
    Sit, Tony
    Xu, Gongjun
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (534) : 874 - 886
  • [10] Comparison of quantile regression curves with censored data
    Tedesco, Lorenzo
    Van Keilegom, Ingrid
    [J]. TEST, 2023, 32 (03) : 829 - 864