A quantile regression estimator for interval-censored data

被引:3
|
作者
Frumento, Paolo [1 ]
机构
[1] Univ Pisa, Pisa, Italy
来源
关键词
interval-censored quantile regression; R package ctqr; signal Tandmobiel (R) data; two-step estimation; FAILURE TIME MODEL; ASYMPTOTIC VARIANCE; ECONOMETRIC-MODELS; INFERENCE; SELECTION;
D O I
10.1515/ijb-2021-0063
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We describe an estimating equation that can be used to fit quantile regression models to interval-censored data. The proposed estimator presents important advantages over the existing methods, and can be applied when the data are a mixture of interval-censored, left-censored, and right-censored observations. We describe estimation and inference, report simulation results, and apply the proposed method to analyze the Signal Tandmobiel (R) data. The necessary R code has been incorporated in the existing R package ctqr.
引用
收藏
页码:81 / 96
页数:16
相关论文
共 50 条
  • [1] Interval-Censored Linear Quantile Regression
    Choi, Taehwa
    Park, Seohyeon
    Cho, Hunyong
    Choi, Sangbum
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [2] REGRESSION WITH INTERVAL-CENSORED DATA
    RABINOWITZ, D
    TSIATIS, A
    ARAGON, J
    BIOMETRIKA, 1995, 82 (03) : 501 - 513
  • [3] Inverse-Weighted Quantile Regression With Partially Interval-Censored Data
    Kim, Yeji
    Choi, Taehwa
    Park, Seohyeon
    Choi, Sangbum
    Bandyopadhyay, Dipankar
    Biometrical Journal, 2024, 66 (08)
  • [4] Quantile regression with interval-censored data in questionnaire-based studies
    Angelov, Angel G.
    Ekstrom, Magnus
    Puzon, Klarizze
    Arcenas, Agustin
    Kristrom, Bengt
    COMPUTATIONAL STATISTICS, 2024, 39 (02) : 583 - 603
  • [5] Quantile regression with interval-censored data in questionnaire-based studies
    Angel G. Angelov
    Magnus Ekström
    Klarizze Puzon
    Agustin Arcenas
    Bengt Kriström
    Computational Statistics, 2024, 39 : 583 - 603
  • [6] A quantile regression estimator for censored data
    Leng, Chenlei
    Tong, Xingwei
    BERNOULLI, 2013, 19 (01) : 344 - 361
  • [7] Nonparametric Regression with Interval-Censored Data
    Wen Li DENG
    Zu Kang ZHENG
    Ri Quan ZHANG
    Acta Mathematica Sinica,English Series, 2014, 30 (08) : 1422 - 1434
  • [8] Nonparametric Regression with Interval-Censored Data
    Deng, Wen Li
    Zheng, Zu Kang
    Zhang, Ri Quan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (08) : 1422 - 1434
  • [10] Nonparametric regression with interval-censored data
    Wen Li Deng
    Zu Kang Zheng
    Ri Quan Zhang
    Acta Mathematica Sinica, English Series, 2014, 30 : 1422 - 1434