Robust Inference for Censored Quantile Regression

被引:0
|
作者
Tang, Yuanyuan [1 ,2 ]
Wang, Xiaorui [1 ,2 ]
Zhu, Jianming [1 ]
Lin, Hongmei [1 ]
Tang, Yanlin [3 ,4 ]
Tong, Tiejun [3 ,4 ]
机构
[1] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
[2] Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
[3] East China Normal Univ, Sch Stat, MOE, KLATASDS, Shanghai 200062, Peoples R China
[4] Hong Kong Baptist Univ, Dept Math, Hong Kong 519087, Peoples R China
基金
中国国家自然科学基金;
关键词
Censored quantile regression; multiply robust propensity score; quantile regression; rank score test; ALGORITHM;
D O I
10.1007/s11424-024-3510-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In various fields such as medical science and finance, it is not uncommon that the data are heavy-tailed and/or not fully observed, calling for robust inference methods that can deal with the outliers and incompleteness efficiently. In this paper, the authors propose a rank score test for quantile regression with fixed censored responses, based on the standard quantile regression in an informative subset which is computationally efficient and robust. The authors further select the informative subset by the multiply robust propensity scores, and then derive the asymptotic properties of the proposed test statistic under both the null and local alternatives. Moreover, the authors conduct extensive simulations to verify the validity of the proposed test, and apply it to a human immunodeficiency virus data set to identify the important predictors for the conditional quantiles of the censored viral load.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] From regression rank scores to robust inference for censored quantile regression
    Sun, Yuan
    He, Xuming
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (04): : 1126 - 1149
  • [2] Partial identification and inference in censored quantile regression
    Fan, Yanqin
    Liu, Ruixuan
    JOURNAL OF ECONOMETRICS, 2018, 206 (01) : 1 - 38
  • [3] INFERENCE FOR CENSORED QUANTILE REGRESSION MODELS IN LONGITUDINAL STUDIES
    Wang, Huixia Judy
    Fygenson, Mendel
    ANNALS OF STATISTICS, 2009, 37 (02): : 756 - 781
  • [4] SCALABLE ESTIMATION AND INFERENCE FOR CENSORED QUANTILE REGRESSION PROCESS
    He, Xuming
    Pan, Xiaoou
    Tan, Kean Ming
    Zhou, Wen-Xin
    ANNALS OF STATISTICS, 2022, 50 (05): : 2899 - 2924
  • [5] Inference for High-Dimensional Censored Quantile Regression
    Fei, Zhe
    Zheng, Qi
    Hong, Hyokyoung G.
    Li, Yi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (542) : 898 - 912
  • [6] A new robust inference for predictive quantile regression
    Cai, Zongwu
    Chen, Haiqiang
    Liao, Xiaosai
    JOURNAL OF ECONOMETRICS, 2023, 234 (01) : 227 - 250
  • [7] Censored quantile regression based on multiply robust propensity scores
    Wang, Xiaorui
    Qin, Guoyou
    Song, Xinyuan
    Tang, Yanlin
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (03) : 475 - 487
  • [8] Instrumental variable quantile regression: A robust inference approach
    Chernozhukov, Victor
    Hansen, Christian
    JOURNAL OF ECONOMETRICS, 2008, 142 (01) : 379 - 398
  • [9] Distributed Censored Quantile Regression
    Sit, Tony
    Xing, Yue
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1685 - 1697
  • [10] Censored quantile regression redux
    Koenker, Roger
    JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (06): : 1 - 25