Robust Inference for Censored Quantile Regression

被引:0
|
作者
Tang, Yuanyuan [1 ,2 ]
Wang, Xiaorui [1 ,2 ]
Zhu, Jianming [1 ]
Lin, Hongmei [1 ]
Tang, Yanlin [3 ,4 ]
Tong, Tiejun [3 ,4 ]
机构
[1] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
[2] Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
[3] East China Normal Univ, Sch Stat, MOE, KLATASDS, Shanghai 200062, Peoples R China
[4] Hong Kong Baptist Univ, Dept Math, Hong Kong 519087, Peoples R China
基金
中国国家自然科学基金;
关键词
Censored quantile regression; multiply robust propensity score; quantile regression; rank score test; ALGORITHM;
D O I
10.1007/s11424-024-3510-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In various fields such as medical science and finance, it is not uncommon that the data are heavy-tailed and/or not fully observed, calling for robust inference methods that can deal with the outliers and incompleteness efficiently. In this paper, the authors propose a rank score test for quantile regression with fixed censored responses, based on the standard quantile regression in an informative subset which is computationally efficient and robust. The authors further select the informative subset by the multiply robust propensity scores, and then derive the asymptotic properties of the proposed test statistic under both the null and local alternatives. Moreover, the authors conduct extensive simulations to verify the validity of the proposed test, and apply it to a human immunodeficiency virus data set to identify the important predictors for the conditional quantiles of the censored viral load.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A censored quantile regression approach for relative survival analysis: Relative survival quantile regression
    Williamson, John M.
    Lin, Hung-Mo
    Lyles, Robert H.
    BIOMETRICAL JOURNAL, 2023, 65 (05)
  • [42] Smoothed quantile regression for censored residual life
    Kyu Hyun Kim
    Daniel J. Caplan
    Sangwook Kang
    Computational Statistics, 2023, 38 : 1001 - 1022
  • [43] An estimating equation for censored and truncated quantile regression
    Frumento, Paolo
    Bottai, Matteo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 113 : 53 - 63
  • [44] Transformed Dynamic Quantile Regression on Censored Data
    Chu, Chi Wing
    Sit, Tony
    Xu, Gongjun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (534) : 874 - 886
  • [45] Smoothed quantile regression for censored residual life
    Kim, Kyu Hyun
    Caplan, Daniel J.
    Kang, Sangwook
    COMPUTATIONAL STATISTICS, 2023, 38 (02) : 1001 - 1022
  • [46] Comparison of quantile regression curves with censored data
    Tedesco, Lorenzo
    Van Keilegom, Ingrid
    TEST, 2023, 32 (03) : 829 - 864
  • [47] Censored quantile regression with partially functional effects
    Qian, Jing
    Peng, Limin
    BIOMETRIKA, 2010, 97 (04) : 839 - 850
  • [48] A New Approach to Censored Quantile Regression Estimation
    Yang, Xiaorong
    Narisetty, Naveen Naidu
    He, Xuming
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (02) : 417 - 425
  • [49] Single index quantile regression for censored data
    Christou, Eliana
    Akritas, Michael G.
    STATISTICAL METHODS AND APPLICATIONS, 2019, 28 (04): : 655 - 678
  • [50] An Adapted Loss Function for Censored Quantile Regression
    De Backer, Mickael
    Ghouch, Anouar El
    Van Keilegom, Ingrid
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) : 1126 - 1137