Censored quantile regression for residual lifetimes

被引:12
|
作者
Kim, Mi-Ok [1 ]
Zhou, Mai [2 ]
Jeong, Jong-Hyeon [3 ]
机构
[1] Cincinnati Childrens Med Ctr, Cincinnati, OH 45229 USA
[2] Univ Kentucky, Lexington, KY 40506 USA
[3] Univ Pittsburgh, Pittsburgh, PA 15261 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Cancer; Empirical likelihood; Quantile regression; Residual lifetime regression; Survival analysis; Wilks' theorem; CENTRAL-LIMIT-THEOREM; RANDOMIZED-TRIAL; POSTMENOPAUSAL WOMEN; TAMOXIFEN THERAPY; SURVIVAL ANALYSIS; LIKELIHOOD RATIO; COVARIABLES;
D O I
10.1007/s10985-011-9212-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a regression method that studies covariate effects on the conditional quantiles of residual lifetimes at a certain followup time point. This can be particularly useful in cancer studies, where more patients survive cancers initially and a patient's residual life expectancy is used to compare the efficacy of secondary or adjuvant therapies. The new method provides a consistent estimator that often exhibits smaller standard error in real and simulated examples, compared to the existing method of Jung et al. (2009). It also provides a simple empirical likelihood inference method that does not require estimating the covariance matrix of the estimator or resampling. We apply the new method to a breast cancer study (NSABP Protocol B-04, Fisher et al. (2002)) and estimate median residual lifetimes at various followup time points, adjusting for important prognostic factors.
引用
收藏
页码:177 / 194
页数:18
相关论文
共 50 条
  • [1] Censored quantile regression for residual lifetimes
    Mi-Ok Kim
    Mai Zhou
    Jong-Hyeon Jeong
    [J]. Lifetime Data Analysis, 2012, 18 : 177 - 194
  • [2] Smoothed quantile regression for censored residual life
    Kyu Hyun Kim
    Daniel J. Caplan
    Sangwook Kang
    [J]. Computational Statistics, 2023, 38 : 1001 - 1022
  • [3] Smoothed quantile regression for censored residual life
    Kim, Kyu Hyun
    Caplan, Daniel J.
    Kang, Sangwook
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (02) : 1001 - 1022
  • [4] Distributed Censored Quantile Regression
    Sit, Tony
    Xing, Yue
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1685 - 1697
  • [5] Censored quantile regression redux
    Koenker, Roger
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (06): : 1 - 25
  • [6] Envelopes for censored quantile regression
    Zhao, Yue
    Van Keilegom, Ingrid
    Ding, Shanshan
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (04) : 1562 - 1585
  • [7] Functional Censored Quantile Regression
    Jiang, Fei
    Cheng, Qing
    Yin, Guosheng
    Shen, Haipeng
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 931 - 944
  • [8] QUANTILE CALCULUS AND CENSORED REGRESSION
    Huang, Yijian
    [J]. ANNALS OF STATISTICS, 2010, 38 (03): : 1607 - 1637
  • [9] Censored Quantile Regression Forest
    Li, Alexander Hanbo
    Bradic, Jelena
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2109 - 2118
  • [10] Weighted censored quantile regression
    Vasudevan, Chithran
    Variyath, Asokan Mulayath
    Fan, Zhaozhi
    [J]. SURVEY METHODOLOGY, 2019, 45 (01) : 127 - 144