Partially linear censored quantile regression

被引:8
|
作者
Neocleous, Tereza [2 ]
Portnoy, Stephen [1 ]
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61801 USA
[2] Univ Glasgow, Dept Stat, Glasgow G12 8QW, Lanark, Scotland
基金
美国国家科学基金会;
关键词
Quantile regression; Partially linear models; B-splines; Censored data; Unemployment duration; SPLINES;
D O I
10.1007/s10985-009-9117-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Censored regression quantile (CRQ) methods provide a powerful and flexible approach to the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models: one (or more) of the explanatory covariates are assumed to act on the response through a non-linear function. Here the CRQ approach of Portnoy (J Am Stat Assoc 98:1001-1012, 2003) is extended to this partially linear setting. Basic consistency results are presented. A simulation experiment and unemployment example justify the value of the partially linear approach over methods based on the Cox proportional hazards model and on methods not permitting nonlinearity.
引用
收藏
页码:357 / 378
页数:22
相关论文
共 50 条
  • [1] Partially linear censored quantile regression
    Tereza Neocleous
    Stephen Portnoy
    [J]. Lifetime Data Analysis, 2009, 15 : 357 - 378
  • [2] Estimation for the censored partially linear quantile regression models
    Du, Jiang
    Zhang, Zhongzhan
    Xu, Dengke
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2393 - 2408
  • [3] Censored quantile regression with partially functional effects
    Qian, Jing
    Peng, Limin
    [J]. BIOMETRIKA, 2010, 97 (04) : 839 - 850
  • [4] Regularized linear censored quantile regression
    Son, Minjeong
    Choi, Taehwa
    Shin, Seung Jun
    Jung, Yoonsuh
    Choi, Sangbum
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (02) : 589 - 607
  • [5] Regularized linear censored quantile regression
    Minjeong Son
    Taehwa Choi
    Seung Jun Shin
    Yoonsuh Jung
    Sangbum Choi
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 589 - 607
  • [6] Composite quantile estimation in partially functional linear regression model with randomly censored responses
    Wu, Chengxin
    Ling, Nengxiang
    Vieu, Philippe
    Fan, Guoliang
    [J]. TEST, 2024,
  • [7] Data Augmentation Based Quantile Regression Estimation for Censored Partially Linear Additive Model
    Li, Lu
    Hao, Ruiting
    Yang, Xiaorong
    [J]. COMPUTATIONAL ECONOMICS, 2024, 64 (02) : 1083 - 1112
  • [8] Interval-Censored Linear Quantile Regression
    Choi, Taehwa
    Park, Seohyeon
    Cho, Hunyong
    Choi, Sangbum
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [9] Transformed linear quantile regression with censored survival data
    Miao, Rui
    Sun, Liuquan
    Tian, Guo-Liang
    [J]. STATISTICS AND ITS INTERFACE, 2016, 9 (02) : 131 - 139
  • [10] LOCAL LINEAR QUANTILE REGRESSION WITH DEPENDENT CENSORED DATA
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    [J]. STATISTICA SINICA, 2009, 19 (04) : 1621 - 1640