Soil moisture estimation using multi linear regression with terraSAR-X data

被引:3
|
作者
Garcia, G. [1 ,3 ]
Brogioni, M. [4 ]
Venturini, V. [1 ]
Rodriguez, L. [1 ]
Fontanelli, G. [4 ]
Walker, E. [1 ]
Graciani, S. [2 ]
Macelloni, G. [4 ]
机构
[1] UNL, FICH, Ctr Estudios Hidro Ambient, Santa Fe, Argentina
[2] UNL, FICH, Santa Fe, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[4] CNR, IFAC, I-00185 Rome, Italy
来源
REVISTA DE TELEDETECCION | 2016年 / 46期
关键词
soil moisture; multiple regression; TerraSAR-X;
D O I
10.4995/raet.2016.4024
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The first five centimeters of soil form an interface where the main heat fluxes exchanges between the land surface and the atmosphere occur. Besides ground measurements, remote sensing has proven to be an excellent tool for the monitoring of spatial and temporal distributed data of the most relevant Earth surface parameters including soil's parameters. Indeed, active microwave sensors (Synthetic Aperture Radar - SAR) offer the opportunity to monitor soil moisture (HS) at global, regional and local scales by monitoring involved processes. Several inversion algorithms, that derive geophysical information as HS from SAR data, were developed. Many of them use electromagnetic models for simulating the backscattering coefficient and are based on statistical techniques, such as neural networks, inversion methods and regression models. Recent studies have shown that simple multiple regression techniques yield satisfactory results. The involved geophysical variables in these methodologies are descriptive of the soil structure, microwave characteristics and land use. Therefore, in this paper we aim at developing a multiple linear regression model to estimate HS on flat agricultural regions using TerraSAR-X satellite data and data from a ground weather station. The results show that the backscatter, the precipitation and the relative humidity are the explanatory variables of HS. The results obtained presented a RMSE of 5.4 and a R-2 of about 0.6.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 50 条
  • [1] Soil-moisture estimation from TerraSAR-X data using neural networks
    Kseneman, Matej
    Gleich, Dusan
    Potocnik, Bozidar
    [J]. MACHINE VISION AND APPLICATIONS, 2012, 23 (05) : 937 - 952
  • [2] Soil Moisture Estimation Using High-Resolution Spotlight TerraSAR-X Data
    Kseneman, Matej
    Gleich, Dusan
    Cucej, Zarko
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 686 - 690
  • [3] Soil-moisture estimation from TerraSAR-X data using neural networks
    Matej Kseneman
    Dušan Gleich
    Božidar Potočnik
    [J]. Machine Vision and Applications, 2012, 23 : 937 - 952
  • [4] Method for soil moisture retrieval in arid prairie using TerraSAR-X data
    Bai, Xiaojing
    He, Binbin
    Xing, Minfeng
    Li, Xiaowen
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [5] MONITORING PERMAFROST SOIL MOISTURE WITH MULTI-TEMPORAL TERRASAR-X DATA IN NORTHERN TIBET
    Wang, Chao
    Zhang, Hong
    Wu, Qingbai
    Zhang, Zhengjia
    Xie, Lei
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3039 - 3042
  • [6] Retrieval of Both Soil Moisture and Texture Using TerraSAR-X Images
    Gorrab, Azza
    Zribi, Mehrez
    Baghdadi, Nicolas
    Mougenot, Bernard
    Fanise, Pascal
    Chabaane, Zohra Lili
    [J]. REMOTE SENSING, 2015, 7 (08) : 10098 - 10116
  • [7] Comparison Between Dubois and Shi Empirical Models Used for Soil Moisture Estimation for TerraSAR-X Data
    Kseneman, Matej
    Gleich, Dusan
    [J]. INFORMACIJE MIDEM-JOURNAL OF MICROELECTRONICS ELECTRONIC COMPONENTS AND MATERIALS, 2010, 40 (03): : 241 - 248
  • [8] Permafrost Soil Moisture Monitoring Using Multi-Temporal TerraSAR-X Data in Beiluhe of Northern Tibet, China
    Wang, Chao
    Zhang, Zhengjia
    Paloscia, Simonetta
    Zhang, Hong
    Wu, Fan
    Wu, Qingbai
    [J]. REMOTE SENSING, 2018, 10 (10):
  • [9] Soil Texture Estimation Over a Semiarid Area Using TerraSAR-X Radar Data
    Zribi, M.
    Kotti, F.
    Lili-Chabaane, Z.
    Baghdadi, N.
    Ben Issa, N.
    Amri, R.
    Duchemin, B.
    Chehbouni, A.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (03) : 353 - 357
  • [10] Use of TerraSAR-X Data to Retrieve Soil Moisture Over Bare Soil Agricultural Fields
    Baghdadi, Nicolas
    Aubert, Maelle
    Zribi, Mehrez
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (03) : 512 - 516