Soil moisture estimation using multi linear regression with terraSAR-X data

被引:3
|
作者
Garcia, G. [1 ,3 ]
Brogioni, M. [4 ]
Venturini, V. [1 ]
Rodriguez, L. [1 ]
Fontanelli, G. [4 ]
Walker, E. [1 ]
Graciani, S. [2 ]
Macelloni, G. [4 ]
机构
[1] UNL, FICH, Ctr Estudios Hidro Ambient, Santa Fe, Argentina
[2] UNL, FICH, Santa Fe, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[4] CNR, IFAC, I-00185 Rome, Italy
来源
REVISTA DE TELEDETECCION | 2016年 / 46期
关键词
soil moisture; multiple regression; TerraSAR-X;
D O I
10.4995/raet.2016.4024
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The first five centimeters of soil form an interface where the main heat fluxes exchanges between the land surface and the atmosphere occur. Besides ground measurements, remote sensing has proven to be an excellent tool for the monitoring of spatial and temporal distributed data of the most relevant Earth surface parameters including soil's parameters. Indeed, active microwave sensors (Synthetic Aperture Radar - SAR) offer the opportunity to monitor soil moisture (HS) at global, regional and local scales by monitoring involved processes. Several inversion algorithms, that derive geophysical information as HS from SAR data, were developed. Many of them use electromagnetic models for simulating the backscattering coefficient and are based on statistical techniques, such as neural networks, inversion methods and regression models. Recent studies have shown that simple multiple regression techniques yield satisfactory results. The involved geophysical variables in these methodologies are descriptive of the soil structure, microwave characteristics and land use. Therefore, in this paper we aim at developing a multiple linear regression model to estimate HS on flat agricultural regions using TerraSAR-X satellite data and data from a ground weather station. The results show that the backscatter, the precipitation and the relative humidity are the explanatory variables of HS. The results obtained presented a RMSE of 5.4 and a R-2 of about 0.6.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 50 条
  • [41] TerraSAR-X Precise Trajectory Estimation and Quality Assessment
    Yoon, Yoke T.
    Eineder, Michael
    Yague-Martinez, Nestor
    Montenbruck, Oliver
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (06): : 1859 - 1868
  • [42] X-BAND BACKSCATTER MAP GENERATION USING TERRASAR-X DATA
    Rizzoli, Paola
    Braeutigam, Benjamin
    Wollstadt, Steffen
    Mittermayer, Josef
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3450 - 3453
  • [43] Analysis of subsidence using TerraSAR-X data Murcia case study
    Herrera, Gerardo
    Tomas, Roberto
    Monells, Daniel
    Centolanza, Giuseppe
    Mallorqui, Jordi J.
    Vicente, Fernando
    Navarro, Victor D.
    Lopez-Sanchez, Juan M.
    Sanabria, Margarita
    Cano, Miguel
    Mulas, Joaquin
    [J]. ENGINEERING GEOLOGY, 2010, 116 (3-4) : 284 - 295
  • [44] Using TerraSAR-X Satellite Data to Detect Road Age and Degradation
    Necsoiu, Marius
    Longepe, Nicolas
    Parra, Jorge O.
    Walter, Gary R.
    [J]. RADAR SENSOR TECHNOLOGY XXI, 2017, 10188
  • [45] ICEBERGS DETECTION WITH TERRASAR-X DATA USING A POLARIMETRIC NOTCH FILTER
    Marino, Armando
    Hajnsek, Irena
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 3273 - 3276
  • [46] Multi-temporal classification of TerraSAR-X data for wetland vegetation mapping
    Betbeder, Julie
    Rapinel, Sebastien
    Corpetti, Thomas
    Pottier, Eric
    Corgne, Samuel
    Hubert-Moy, Laurence
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XV, 2013, 8887
  • [47] Estimating Surface Soil Moisture from TerraSAR-X Data over Two Small Catchments in the Sahelian Part of Western Niger
    Baghdadi, Nicolas
    Camus, Pauline
    Beaugendre, Nicolas
    Issa, Oumarou Malam
    Zribi, Mehrez
    Desprats, Jean Francois
    Rajot, Jean Louis
    Abdallah, Chadi
    Sannier, Christophe
    [J]. REMOTE SENSING, 2011, 3 (06) : 1266 - 1283
  • [48] Detection of ground movements in Montjuic (Barcelona) using TerraSAR-X data
    Tanteri, Luca
    Cuevas-Gonzalez, Maria
    Devanthery, Nuria
    Crosetto, Michele
    Casagli, Nicola
    [J]. BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2016, 75 (03) : 1023 - 1032
  • [49] Neural Networks for Oil Spill Detection using TerraSAR-X Data
    Avezzano, Ruggero G.
    Velotto, Domenico
    Soccorsi, Matteo
    Del Frate, Fabio
    Lehner, Susanne
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XI, 2011, 8179
  • [50] Investigation of Ocean Surface Wave Refraction Using TerraSAR-X Data
    Li, Xiaoming
    Lehner, Susanne
    Rosenthal, Wolfgang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (02): : 830 - 840