Soil moisture estimation using multi linear regression with terraSAR-X data

被引:3
|
作者
Garcia, G. [1 ,3 ]
Brogioni, M. [4 ]
Venturini, V. [1 ]
Rodriguez, L. [1 ]
Fontanelli, G. [4 ]
Walker, E. [1 ]
Graciani, S. [2 ]
Macelloni, G. [4 ]
机构
[1] UNL, FICH, Ctr Estudios Hidro Ambient, Santa Fe, Argentina
[2] UNL, FICH, Santa Fe, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[4] CNR, IFAC, I-00185 Rome, Italy
来源
REVISTA DE TELEDETECCION | 2016年 / 46期
关键词
soil moisture; multiple regression; TerraSAR-X;
D O I
10.4995/raet.2016.4024
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The first five centimeters of soil form an interface where the main heat fluxes exchanges between the land surface and the atmosphere occur. Besides ground measurements, remote sensing has proven to be an excellent tool for the monitoring of spatial and temporal distributed data of the most relevant Earth surface parameters including soil's parameters. Indeed, active microwave sensors (Synthetic Aperture Radar - SAR) offer the opportunity to monitor soil moisture (HS) at global, regional and local scales by monitoring involved processes. Several inversion algorithms, that derive geophysical information as HS from SAR data, were developed. Many of them use electromagnetic models for simulating the backscattering coefficient and are based on statistical techniques, such as neural networks, inversion methods and regression models. Recent studies have shown that simple multiple regression techniques yield satisfactory results. The involved geophysical variables in these methodologies are descriptive of the soil structure, microwave characteristics and land use. Therefore, in this paper we aim at developing a multiple linear regression model to estimate HS on flat agricultural regions using TerraSAR-X satellite data and data from a ground weather station. The results show that the backscatter, the precipitation and the relative humidity are the explanatory variables of HS. The results obtained presented a RMSE of 5.4 and a R-2 of about 0.6.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 50 条
  • [31] SEA CLUTTER STATISTICAL CHARACTERIZATION USING TERRASAR-X DATA
    Makhoul, Eduardo
    Zhan, Yu
    Broquetas, Antoni
    Ruiz-Rodon, Josep
    Baumgartner, Stefan
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 5130 - 5133
  • [32] Dynamically adapted ship parameter estimation using TerraSAR-X images
    Tings, Bjoern
    da Silva, Carlos Augusto Bentes
    Lehner, Susanne
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (09) : 1990 - 2015
  • [33] ASSIMILATION OF TERRASAR-X DATA INTO A SNOWPACK MODEL
    Xuan-Vu Phan
    Gay, Michel
    Ferro-Famil, Laurent
    Durand, Yves
    Dumont, Marie
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3998 - 4001
  • [34] DEM generation of TerraSAR-X spotlight data
    Li, Yuanhao
    Hu, Cheng
    Long, Teng
    Zhu, Mao
    [J]. 2013 IEEE RADAR CONFERENCE (RADAR), 2013,
  • [35] SNOW WETNESS ESTIMATION FROM DUAL POLARIMETRIC COHERENT TERRASAR-X DATA
    Bhattacharya, A.
    Surendar, M.
    De, S.
    Venkataraman, G.
    Singh, G.
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [36] LANDSLIDE MONITORING WITH SPOTLIGHT TERRASAR-X DATA
    Iglesias, Ruben
    Monells, Dani
    Centolanza, Giuseppe
    Mallorqu, Jordi J.
    Fabregas, Xavier
    Aguasca, Albert
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1298 - 1301
  • [37] Soil Moisture Estimation based on the Distributed Scatterers Adaptive Filter over the QTP Permafrost Region using Sentinel-1 and High-resolution TerraSAR-X Data
    Zhang, Xuefei
    Zhang, Hong
    Wang, Chao
    Tang, Yixian
    Zhang, Bo
    Wu, Fan
    Wang, Jing
    Zhang, Zhengjia
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (03) : 902 - 928
  • [38] TerraSAR-X Precise Trajectory Estimation and Quality Assessment
    Yoon, Yoke T.
    Eineder, Michael
    Yague-Martinez, Nestor
    Montenbruck, Oliver
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (06): : 1859 - 1868
  • [39] X-BAND BACKSCATTER MAP GENERATION USING TERRASAR-X DATA
    Rizzoli, Paola
    Braeutigam, Benjamin
    Wollstadt, Steffen
    Mittermayer, Josef
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3450 - 3453
  • [40] Analysis of subsidence using TerraSAR-X data Murcia case study
    Herrera, Gerardo
    Tomas, Roberto
    Monells, Daniel
    Centolanza, Giuseppe
    Mallorqui, Jordi J.
    Vicente, Fernando
    Navarro, Victor D.
    Lopez-Sanchez, Juan M.
    Sanabria, Margarita
    Cano, Miguel
    Mulas, Joaquin
    [J]. ENGINEERING GEOLOGY, 2010, 116 (3-4) : 284 - 295