Soil Moisture Estimation Using High-Resolution Spotlight TerraSAR-X Data

被引:18
|
作者
Kseneman, Matej [1 ]
Gleich, Dusan [1 ]
Cucej, Zarko [1 ]
机构
[1] Univ Maribor, Fac Elect Engn & Comp Sci, SLO-2000 Maribor, Slovenia
关键词
Empirical models; soil moisture estimation; TerraSAR-X; SURFACE PARAMETERS; SENSITIVITY;
D O I
10.1109/LGRS.2010.2099641
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
High-resolution and dual polarized Spotlight TerraSAR-X images are assessed for soil moisture parameter retrieval. This letter presents bare soil moisture estimation and estimation of moisture of vegetated areas. The bare soil moisture estimation is based on the Shi model. The Minimum Mean Square Error approach is used to determine the unknown parameters of the Shi model using ground measurements of volumetric moisture and SAR data. The soil moisture of vegetated areas is estimated using the vegetation and soil backscattering coefficients. The unknown parameters of vegetation and soil backscattering models were estimated using Tikhonov optimization. The experimental results showed that the used models provide good results for estimating bare soil moisture and moisture of vegetated areas.
引用
收藏
页码:686 / 690
页数:5
相关论文
共 50 条
  • [1] Soil moisture estimation using multi linear regression with terraSAR-X data
    Garcia, G.
    Brogioni, M.
    Venturini, V.
    Rodriguez, L.
    Fontanelli, G.
    Walker, E.
    Graciani, S.
    Macelloni, G.
    [J]. REVISTA DE TELEDETECCION, 2016, (46): : 73 - 81
  • [2] Variograms for atmospheric phase screen estimation from TerraSAR-X high resolution spotlight data
    Even, Markus
    Schunert, Alexander
    Schulz, Karsten
    Soergel, Uwe
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES X, 2010, 7829
  • [3] Soil-moisture estimation from TerraSAR-X data using neural networks
    Kseneman, Matej
    Gleich, Dusan
    Potocnik, Bozidar
    [J]. MACHINE VISION AND APPLICATIONS, 2012, 23 (05) : 937 - 952
  • [4] Soil-moisture estimation from TerraSAR-X data using neural networks
    Matej Kseneman
    Dušan Gleich
    Božidar Potočnik
    [J]. Machine Vision and Applications, 2012, 23 : 937 - 952
  • [5] Site Monitoring applications with high-resolution TerraSAR-X data
    Corinna, Prietzsch
    Lars, Petersen
    Oliver, Lang
    Anderssohn, Jan
    Weihing, Diana
    [J]. 10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [6] Geolocation and Stereo Height Estimation Using TerraSAR-X Spotlight Image Data
    Eldhuset, Knut
    Weydahl, Dan Johan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10): : 3574 - 3581
  • [7] Absolute geolocation accuracy of high-resolution spotlight TerraSAR-X imagery - validation in Wuhan
    Wang, Jinghui
    Balz, Timo
    Liao, Mingsheng
    [J]. GEO-SPATIAL INFORMATION SCIENCE, 2016, 19 (04) : 267 - 272
  • [8] Area Monitoring of Namco Lake in Summer by High-resolution TerraSAR-X Spotlight Mode
    Chen, Jiaqi
    Li, Ning
    Liu, Zhongling
    Zhang, Shilin
    [J]. 2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 5140 - 5143
  • [9] Soil Moisture Estimation based on the Distributed Scatterers Adaptive Filter over the QTP Permafrost Region using Sentinel-1 and High-resolution TerraSAR-X Data
    Zhang, Xuefei
    Zhang, Hong
    Wang, Chao
    Tang, Yixian
    Zhang, Bo
    Wu, Fan
    Wang, Jing
    Zhang, Zhengjia
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (03) : 902 - 928
  • [10] ATMOSPHERIC PHASE SCREEN-ESTIMATION FOR PSINSAR APPLIED TO TERRASAR-X HIGH RESOLUTION SPOTLIGHT-DATA
    Even, Markus
    Schunert, Alexander
    Schulz, Karsten
    Soergel, Uwe
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2928 - 2931