Soil-moisture estimation from TerraSAR-X data using neural networks

被引:0
|
作者
Matej Kseneman
Dušan Gleich
Božidar Potočnik
机构
[1] University of Maribor,Faculty of Electrical Engineering and Computer Science
来源
关键词
Model-based de-speckling; Soil-moisture estimation; Self-organizing maps; Feed-forward back-propagation neural network; TerraSAR-X;
D O I
暂无
中图分类号
学科分类号
摘要
Early prediction of natural disasters like floods and landslides is essential for reasons of public safety. This can be attained by processing Synthetic-Aperture Radar (SAR) images and retrieving soil-moisture parameters. In this article, TerraSAR-X product images are investigated in combination with a water-cloud model based on the Shi semi-empirical model to determine the accuracy of soil-moisture parameter retrieval. SAR images were captured between January 2008 and September 2010 in the vicinity of the city Maribor, Slovenia, at different incidence angles. The water-cloud model provides acceptable estimated soil-moisture parameters at bare or scarcely vegetated soil areas. However, this model is too sensitive to speckle noise; therefore, a pre-processing step for speckle-noise reduction is carried out. Afterwards, self-organizing neural networks (SOM) are used to segment the areas at which the performance of this model is poor, and at the same time neural networks are also used for a more accurate approximation of model parameters’ values. Ground-truth is measured using the Pico64 sensor located on the field, simultaneously with capturing SAR images, in order to enable the comparison and validation of the obtained results. Experimental results show that the proposed method outperforms the water-cloud model accuracy over all incidence angles.
引用
收藏
页码:937 / 952
页数:15
相关论文
共 50 条
  • [1] Soil-moisture estimation from TerraSAR-X data using neural networks
    Kseneman, Matej
    Gleich, Dusan
    Potocnik, Bozidar
    [J]. MACHINE VISION AND APPLICATIONS, 2012, 23 (05) : 937 - 952
  • [2] Soil moisture estimation using multi linear regression with terraSAR-X data
    Garcia, G.
    Brogioni, M.
    Venturini, V.
    Rodriguez, L.
    Fontanelli, G.
    Walker, E.
    Graciani, S.
    Macelloni, G.
    [J]. REVISTA DE TELEDETECCION, 2016, (46): : 73 - 81
  • [3] Soil Moisture Estimation Using High-Resolution Spotlight TerraSAR-X Data
    Kseneman, Matej
    Gleich, Dusan
    Cucej, Zarko
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 686 - 690
  • [4] Method for soil moisture retrieval in arid prairie using TerraSAR-X data
    Bai, Xiaojing
    He, Binbin
    Xing, Minfeng
    Li, Xiaowen
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [5] Neural Networks for Oil Spill Detection using TerraSAR-X Data
    Avezzano, Ruggero G.
    Velotto, Domenico
    Soccorsi, Matteo
    Del Frate, Fabio
    Lehner, Susanne
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XI, 2011, 8179
  • [6] Soil roughness retrieval from TerraSar-X data using neural network and fractal method
    Maleki, Mohammad
    Amini, Jalal
    Notarnicola, Claudia
    [J]. ADVANCES IN SPACE RESEARCH, 2019, 64 (05) : 1117 - 1129
  • [7] Soil-Moisture Estimation From X-Band Data Using Tikhonov Regularization and Neural Net
    Kseneman, Matej
    Gleich, Dusan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (07): : 3885 - 3898
  • [8] Retrieval of Both Soil Moisture and Texture Using TerraSAR-X Images
    Gorrab, Azza
    Zribi, Mehrez
    Baghdadi, Nicolas
    Mougenot, Bernard
    Fanise, Pascal
    Chabaane, Zohra Lili
    [J]. REMOTE SENSING, 2015, 7 (08) : 10098 - 10116
  • [9] Comparison Between Dubois and Shi Empirical Models Used for Soil Moisture Estimation for TerraSAR-X Data
    Kseneman, Matej
    Gleich, Dusan
    [J]. INFORMACIJE MIDEM-JOURNAL OF MICROELECTRONICS ELECTRONIC COMPONENTS AND MATERIALS, 2010, 40 (03): : 241 - 248
  • [10] Soil Texture Estimation Over a Semiarid Area Using TerraSAR-X Radar Data
    Zribi, M.
    Kotti, F.
    Lili-Chabaane, Z.
    Baghdadi, N.
    Ben Issa, N.
    Amri, R.
    Duchemin, B.
    Chehbouni, A.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (03) : 353 - 357