Comparison Between Dubois and Shi Empirical Models Used for Soil Moisture Estimation for TerraSAR-X Data

被引:0
|
作者
Kseneman, Matej [1 ]
Gleich, Dusan [1 ]
机构
[1] Fak Elektrotehniko, Maribor 2000, Slovenia
关键词
TerraSAR-X; soil moisture estimation; empirical models; self-organizing maps; MBD; GMRF; CUDA; SURFACE-ROUGHNESS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is essential for Earth's environment to predict natural disasters like fires, floods, earthquakes, etc. Our goal is to asses quality of empirical models used in soil moisture parameter retrieval. In this paper we assessed Dubois and Shi empirical model over the river Drava next to the city of Maribor, Slovenia. These models were applied to TerraSAR-X satellite, which is a German national space satellite operating at X-band radar frequency. In order to compare and validate results, field measurements were done with a Pico64 sensor at the time of image capture. As we have concluded, Shi model is preferred when it comes to accuracy of estimated volumetric soil moisture.
引用
收藏
页码:241 / 248
页数:8
相关论文
共 50 条
  • [1] Soil moisture estimation using multi linear regression with terraSAR-X data
    Garcia, G.
    Brogioni, M.
    Venturini, V.
    Rodriguez, L.
    Fontanelli, G.
    Walker, E.
    Graciani, S.
    Macelloni, G.
    [J]. REVISTA DE TELEDETECCION, 2016, (46): : 73 - 81
  • [2] Soil-moisture estimation from TerraSAR-X data using neural networks
    Kseneman, Matej
    Gleich, Dusan
    Potocnik, Bozidar
    [J]. MACHINE VISION AND APPLICATIONS, 2012, 23 (05) : 937 - 952
  • [3] Soil Moisture Estimation Using High-Resolution Spotlight TerraSAR-X Data
    Kseneman, Matej
    Gleich, Dusan
    Cucej, Zarko
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (04) : 686 - 690
  • [4] Soil-moisture estimation from TerraSAR-X data using neural networks
    Matej Kseneman
    Dušan Gleich
    Božidar Potočnik
    [J]. Machine Vision and Applications, 2012, 23 : 937 - 952
  • [5] Method for soil moisture retrieval in arid prairie using TerraSAR-X data
    Bai, Xiaojing
    He, Binbin
    Xing, Minfeng
    Li, Xiaowen
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [6] Use of TerraSAR-X Data to Retrieve Soil Moisture Over Bare Soil Agricultural Fields
    Baghdadi, Nicolas
    Aubert, Maelle
    Zribi, Mehrez
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (03) : 512 - 516
  • [7] Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust
    Aubert, M.
    Baghdadi, N.
    Zribi, M.
    Douaoui, A.
    Loumagne, C.
    Baup, F.
    El Hajj, M.
    Garrigues, S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2011, 115 (08) : 1801 - 1810
  • [8] Retrieval of Both Soil Moisture and Texture Using TerraSAR-X Images
    Gorrab, Azza
    Zribi, Mehrez
    Baghdadi, Nicolas
    Mougenot, Bernard
    Fanise, Pascal
    Chabaane, Zohra Lili
    [J]. REMOTE SENSING, 2015, 7 (08) : 10098 - 10116
  • [9] MONITORING PERMAFROST SOIL MOISTURE WITH MULTI-TEMPORAL TERRASAR-X DATA IN NORTHERN TIBET
    Wang, Chao
    Zhang, Hong
    Wu, Qingbai
    Zhang, Zhengjia
    Xie, Lei
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3039 - 3042
  • [10] Soil Texture Estimation Over a Semiarid Area Using TerraSAR-X Radar Data
    Zribi, M.
    Kotti, F.
    Lili-Chabaane, Z.
    Baghdadi, N.
    Ben Issa, N.
    Amri, R.
    Duchemin, B.
    Chehbouni, A.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (03) : 353 - 357