CS-Rickart Modules

被引:7
|
作者
Abyzov, A. N. [1 ]
Nhan, T. H. N. [1 ]
机构
[1] Kazan Fed Univ, NI Lobachevskii Inst Math & Mech, Kremlevskaya ul 18, Kazan 420008, Russia
关键词
CS-Rickart modules; Rickart modules; ACS rings; semihereditary rings;
D O I
10.1134/S199508021404009X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study the concept of CS-Rickart modules, that is a module analogue of the concept of ACS rings. A ring R is called a right weakly semihereditary ring if every its finitly generated right ideal is of the form P circle plus S, where P-R is a projective module and S-R is a singular module. We describe the ring R over which Mat(n)(R) is a right ACS ring for any n epsilon N. We show that every finitely generated projective right R-module will to be a CS-Rickart module, is precisely when R is a right weakly semihereditary ring. Also, we prove that if R is a right weakly semihereditary ring, then every finitely generated submodule of a projective right R-module has the form P-1 circle plus . . . circle plus P-n circle plus S, where every P-1, . . . , P-n is a projective module which is isomorphic to a submodule of R-R, and S-R is a singular module. As corollaries we obtain some well-known properties of Rickart modules and semihereditary rings.
引用
收藏
页码:317 / 326
页数:10
相关论文
共 50 条
  • [1] CS-Rickart modules
    Abyzov, A. N.
    Nhan, T. H. N.
    RUSSIAN MATHEMATICS, 2014, 58 (05) : 48 - 52
  • [2] CS-Rickart and dual CS-Rickart objects in abelian categories
    Crivei, Septimiu
    Radu, Simona Maria
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 29 (01) : 97 - 120
  • [3] Dual CS-Rickart Modules over Dedekind Domains
    Tribak, Rachid
    ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (02) : 229 - 250
  • [4] Dual CS-Rickart Modules over Dedekind Domains
    Rachid Tribak
    Algebras and Representation Theory, 2020, 23 : 229 - 250
  • [5] Strongly CS-Rickart and dual strongly CS-Rickart objects in abelian categories
    Crivei, Septimiu
    Radu, Simona Maria
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (03) : 903 - 919
  • [6] Transfer of CS-Rickart and dual CS-Rickart properties via functors between abelian categories
    Crivei, Septimiu
    Radu, Simona Maria
    QUAESTIONES MATHEMATICAE, 2022, 45 (07) : 993 - 1011
  • [7] F-CS-RICKART MODULES
    Kaewwangsakoon, Julalak
    Pianskool, Sajee
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2020, 45 (01): : 29 - 54
  • [8] On dual Rickart modules and weak dual Rickart modules
    Tutuncu, Derya Keskin
    Ertas, Nil Orhan
    Tribak, Rachid
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 25 (02): : 200 - 214
  • [9] Σ-Rickart modules
    Lee, Gangyong
    Medina-Barcenas, Mauricio
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (11)
  • [10] RICKART MODULES
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (11) : 4005 - 4027