CS-Rickart Modules

被引:7
|
作者
Abyzov, A. N. [1 ]
Nhan, T. H. N. [1 ]
机构
[1] Kazan Fed Univ, NI Lobachevskii Inst Math & Mech, Kremlevskaya ul 18, Kazan 420008, Russia
关键词
CS-Rickart modules; Rickart modules; ACS rings; semihereditary rings;
D O I
10.1134/S199508021404009X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study the concept of CS-Rickart modules, that is a module analogue of the concept of ACS rings. A ring R is called a right weakly semihereditary ring if every its finitly generated right ideal is of the form P circle plus S, where P-R is a projective module and S-R is a singular module. We describe the ring R over which Mat(n)(R) is a right ACS ring for any n epsilon N. We show that every finitely generated projective right R-module will to be a CS-Rickart module, is precisely when R is a right weakly semihereditary ring. Also, we prove that if R is a right weakly semihereditary ring, then every finitely generated submodule of a projective right R-module has the form P-1 circle plus . . . circle plus P-n circle plus S, where every P-1, . . . , P-n is a projective module which is isomorphic to a submodule of R-R, and S-R is a singular module. As corollaries we obtain some well-known properties of Rickart modules and semihereditary rings.
引用
收藏
页码:317 / 326
页数:10
相关论文
共 50 条
  • [21] On a Class of Dual Rickart Modules
    R. Tribak
    Ukrainian Mathematical Journal, 2020, 72 : 1118 - 1130
  • [22] T-RICKART MODULES
    Atani, S. Ebrahimi
    Khoramdel, M.
    Hesari, S. Dolati Pish
    COLLOQUIUM MATHEMATICUM, 2012, 128 (01) : 87 - 100
  • [23] Direct sums of Rickart modules
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    JOURNAL OF ALGEBRA, 2012, 353 (01) : 62 - 78
  • [24] Strongly lifting modules and strongly dual Rickart modules
    Wang, Yongduo
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 219 - 229
  • [25] T-DUAL RICKART MODULES
    Atani, S. Ebrahimi
    Khoramdel, M.
    Hesari, S. Dolati Pish
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (03) : 627 - 642
  • [26] ON WEAK DUAL RICKART MODULES AND DUAL BAER MODULES
    Tribak, Rachid
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (08) : 3190 - 3206
  • [27] Strongly lifting modules and strongly dual Rickart modules
    Yongduo Wang
    Frontiers of Mathematics in China, 2017, 12 : 219 - 229
  • [28] DUAL RICKART (BAER) MODULES AND PRERADICALS
    Asgari, S.
    Talebi, Y.
    Hamzekolaee, A. r. moniri
    JOURNAL OF ALGEBRAIC SYSTEMS, 2024, 12 (01):
  • [29] Module decompositions via Rickart modules
    Harmanci, A.
    Ungor, B.
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 26 (01): : 47 - 64
  • [30] (Ω)under-tilde-RICKART MODULES
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (05) : 2124 - 2151