CS-Rickart Modules

被引:7
|
作者
Abyzov, A. N. [1 ]
Nhan, T. H. N. [1 ]
机构
[1] Kazan Fed Univ, NI Lobachevskii Inst Math & Mech, Kremlevskaya ul 18, Kazan 420008, Russia
关键词
CS-Rickart modules; Rickart modules; ACS rings; semihereditary rings;
D O I
10.1134/S199508021404009X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study the concept of CS-Rickart modules, that is a module analogue of the concept of ACS rings. A ring R is called a right weakly semihereditary ring if every its finitly generated right ideal is of the form P circle plus S, where P-R is a projective module and S-R is a singular module. We describe the ring R over which Mat(n)(R) is a right ACS ring for any n epsilon N. We show that every finitely generated projective right R-module will to be a CS-Rickart module, is precisely when R is a right weakly semihereditary ring. Also, we prove that if R is a right weakly semihereditary ring, then every finitely generated submodule of a projective right R-module has the form P-1 circle plus . . . circle plus P-n circle plus S, where every P-1, . . . , P-n is a projective module which is isomorphic to a submodule of R-R, and S-R is a singular module. As corollaries we obtain some well-known properties of Rickart modules and semihereditary rings.
引用
收藏
页码:317 / 326
页数:10
相关论文
共 50 条
  • [31] s.Baer and s.Rickart Modules
    Birkenmeier, Gary F.
    LeBlanc, Richard L.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (08)
  • [32] A new approach to (dual) Rickart modules via isomorphisms
    Asgari, S.
    Talebi, Y.
    Hamzekolaee, A. R. Moniri
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (02): : 5 - 18
  • [33] Fully invariant submodules for constructing dual Rickart modules and dual Baer modules
    Amouzegar, Tayyabeh
    Hamzekolaee, Ali Reza Moniri
    Tercan, Adnan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (03): : 295 - 306
  • [34] CS-MODULES AND WEAK CS-MODULES
    SMITH, PF
    LECTURE NOTES IN MATHEMATICS, 1990, 1448 : 99 - 115
  • [35] Rickart modules relative to singular submodule and dual Goldie torsion theory
    Ungor, Burcu
    Halicioglu, Sait
    Harmanci, Abdullah
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (08)
  • [36] Max CS and min CS modules
    Tu, Truong Dinh
    Thuat, Do
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (04) : 1171 - 1180
  • [37] Decompositions of modules into projective modules and CS-modules
    Plubtieng, S
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 62 (01) : 159 - 164
  • [38] On countably Σ-CS modules
    Alahmadi, Adel N.
    Al-Hazmi, Husain S.
    Guil Asensio, Pedro A.
    Algebra and its Applications, 2006, 419 : 1 - 6
  • [39] Rings whose CS modules are countably Σ-CS
    Er, N
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (11) : 5513 - 5523
  • [40] π-Rickart and dual π-Rickart objects in abelian categories
    Crivei, Septimiu
    Olteanu, Gabriela
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (12)