CS-Rickart Modules

被引:7
|
作者
Abyzov, A. N. [1 ]
Nhan, T. H. N. [1 ]
机构
[1] Kazan Fed Univ, NI Lobachevskii Inst Math & Mech, Kremlevskaya ul 18, Kazan 420008, Russia
关键词
CS-Rickart modules; Rickart modules; ACS rings; semihereditary rings;
D O I
10.1134/S199508021404009X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study the concept of CS-Rickart modules, that is a module analogue of the concept of ACS rings. A ring R is called a right weakly semihereditary ring if every its finitly generated right ideal is of the form P circle plus S, where P-R is a projective module and S-R is a singular module. We describe the ring R over which Mat(n)(R) is a right ACS ring for any n epsilon N. We show that every finitely generated projective right R-module will to be a CS-Rickart module, is precisely when R is a right weakly semihereditary ring. Also, we prove that if R is a right weakly semihereditary ring, then every finitely generated submodule of a projective right R-module has the form P-1 circle plus . . . circle plus P-n circle plus S, where every P-1, . . . , P-n is a projective module which is isomorphic to a submodule of R-R, and S-R is a singular module. As corollaries we obtain some well-known properties of Rickart modules and semihereditary rings.
引用
收藏
页码:317 / 326
页数:10
相关论文
共 50 条
  • [41] τ-Rickart模和相对τ-Rickart模
    李煜彦
    何东林
    西北师范大学学报(自然科学版), 2020, 56 (06) : 24 - 27
  • [42] A generalization of CS-modules
    Celik, C
    Harmanci, A
    Smith, PF
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (14) : 5445 - 5460
  • [43] On generalized CS-modules
    Qingyi Zeng
    Czechoslovak Mathematical Journal, 2015, 65 : 891 - 904
  • [44] HEREDITARY CS-MODULES
    DUNG, NV
    SMITH, PF
    MATHEMATICA SCANDINAVICA, 1992, 71 (02) : 173 - 180
  • [45] On generalized CS-modules
    Zeng, Qingyi
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) : 891 - 904
  • [46] SIGMA-CS-MODULES
    DUNG, NV
    SMITH, PF
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (01) : 83 - 93
  • [47] GENERALIZATIONS OF CS-MODULES
    SMITH, PF
    TERCAN, A
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (06) : 1809 - 1847
  • [48] On the Endomorphism Rings of Max CS and Min CS Modules
    Do Van Thuat
    Hoang Dinh Hai
    Nghiem, Nguyen D. Hoa
    Chairat, Sarapee
    INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2016 (ICOMEIA2016), 2016, 1775
  • [49] Rickart and Dual Rickart Objects in Abelian Categories
    Septimiu Crivei
    Arda Kör
    Applied Categorical Structures, 2016, 24 : 797 - 824
  • [50] Rickart and Dual Rickart Objects in Abelian Categories
    Crivei, Septimiu
    Kor, Arda
    APPLIED CATEGORICAL STRUCTURES, 2016, 24 (06) : 797 - 824