Dual CS-Rickart Modules over Dedekind Domains

被引:3
|
作者
Tribak, Rachid [1 ]
机构
[1] Ctr Reg Metiers Educ & Format CRMEFTTH, CRMEF Tanger, Ave My Abdelaziz,BP 3117 Souani, Tangier, Morocco
关键词
Endomorphisms; d-CS-Rickart modules; d-Rickart modules; Lifting modules;
D O I
10.1007/s10468-018-09845-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study d-CS-Rickart modules (i.e. modules M such that for every endomorphism phi of M, the image of phi lies above a direct summand of M) over Dedekind domains. The structure of d-CS-Rickart modules over discrete valuation rings is fully determined. It is also shown that for a d-CS-Rickart R-module M over a nonlocal Dedekind domain R, the following assertions hold: The -primary component of is a direct summand of for any nonzero prime ideal of . MMR/() is an injective -module, where () is the torsion submodule of . MTMRTMMIf, moreover, M is a reduced R-module, then where P is the set of all nonzero prime ideals of R and is the -primary component of M for every .
引用
收藏
页码:229 / 250
页数:22
相关论文
共 50 条
  • [1] Dual CS-Rickart Modules over Dedekind Domains
    Rachid Tribak
    Algebras and Representation Theory, 2020, 23 : 229 - 250
  • [2] CS-Rickart modules
    Abyzov, A. N.
    Nhan, T. H. N.
    RUSSIAN MATHEMATICS, 2014, 58 (05) : 48 - 52
  • [3] CS-Rickart Modules
    Abyzov, A. N.
    Nhan, T. H. N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2014, 35 (04) : 317 - 326
  • [4] CS-Rickart and dual CS-Rickart objects in abelian categories
    Crivei, Septimiu
    Radu, Simona Maria
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 29 (01) : 97 - 120
  • [5] Strongly CS-Rickart and dual strongly CS-Rickart objects in abelian categories
    Crivei, Septimiu
    Radu, Simona Maria
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (03) : 903 - 919
  • [6] Transfer of CS-Rickart and dual CS-Rickart properties via functors between abelian categories
    Crivei, Septimiu
    Radu, Simona Maria
    QUAESTIONES MATHEMATICAE, 2022, 45 (07) : 993 - 1011
  • [7] On dual Rickart modules and weak dual Rickart modules
    Tutuncu, Derya Keskin
    Ertas, Nil Orhan
    Tribak, Rachid
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 25 (02): : 200 - 214
  • [8] SUPPLEMENTED MODULES OVER DEDEKIND DOMAINS
    HAUSEN, J
    PACIFIC JOURNAL OF MATHEMATICS, 1982, 100 (02) : 387 - 402
  • [9] SUPERDECOMPOSABLE MODULES OVER DEDEKIND DOMAINS
    MEINEL, K
    ARCHIV DER MATHEMATIK, 1982, 39 (01) : 11 - 18
  • [10] Tilting modules over small Dedekind domains
    Trlifaj, J
    Wallutis, SL
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 172 (01) : 109 - 117