On dual Rickart modules and weak dual Rickart modules

被引:0
|
作者
Tutuncu, Derya Keskin [1 ]
Ertas, Nil Orhan [2 ]
Tribak, Rachid [3 ]
机构
[1] Hacettepe Univ, Dept Math, TR-06800 Ankara, Turkey
[2] Karabuk Univ, Dept Math, TR-78050 Karabuk, Turkey
[3] Ctr Reg Metiers Educ & Format CRMEF Tanger, Ave My Abdelaziz,BP 3117, Tangier 90000, Morocco
来源
ALGEBRA & DISCRETE MATHEMATICS | 2018年 / 25卷 / 02期
关键词
dual Rickart modules; weak dual Rickart modules; weak Rickart rings; V-rings;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism phi of M, phi(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism phi of M, phi(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then we study direct sums of (w)d-Rickart modules and the class of rings for which every finitely generated module is (w)d-Rickart. We conclude by some structure results.
引用
收藏
页码:200 / 214
页数:15
相关论文
共 50 条
  • [1] ON WEAK DUAL RICKART MODULES AND DUAL BAER MODULES
    Tribak, Rachid
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (08) : 3190 - 3206
  • [2] DUAL RICKART MODULES
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4036 - 4058
  • [3] On a Class of Dual Rickart Modules
    R. Tribak
    Ukrainian Mathematical Journal, 2020, 72 : 1118 - 1130
  • [4] On a Class of Dual Rickart Modules
    Tribak, R.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (07) : 1118 - 1130
  • [5] t-Rickart and Dual t-Rickart Modules
    Asgari, Sh.
    Haghany, A.
    ALGEBRA COLLOQUIUM, 2015, 22 : 849 - 870
  • [6] On weak Rickart modules
    Tutuncu, Derya Keskin
    Ertas, Nil Orhan
    Tribak, Rachid
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (09)
  • [7] T-DUAL RICKART MODULES
    Atani, S. Ebrahimi
    Khoramdel, M.
    Hesari, S. Dolati Pish
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (03) : 627 - 642
  • [8] DUAL RICKART (BAER) MODULES AND PRERADICALS
    Asgari, S.
    Talebi, Y.
    Hamzekolaee, A. r. moniri
    JOURNAL OF ALGEBRAIC SYSTEMS, 2024, 12 (01):
  • [9] Strongly lifting modules and strongly dual Rickart modules
    Wang, Yongduo
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 219 - 229
  • [10] Strongly lifting modules and strongly dual Rickart modules
    Yongduo Wang
    Frontiers of Mathematics in China, 2017, 12 : 219 - 229