DUAL RICKART MODULES

被引:79
|
作者
Lee, Gangyong [2 ]
Rizvi, S. Tariq [1 ]
Roman, Cosmin S. [1 ]
机构
[1] Ohio State Univ, Dept Math, Lima, OH 45804 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Dual Baer modules; Endomorphism rings; Idempotents and annihilator; Rickart and Baer rings and modules; von Neumann regular rings; ENDOMORPHISM-RINGS; BAER; EXTENSIONS;
D O I
10.1080/00927872.2010.515639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rickart property for modules has been studied recently. In this article, we introduce and study the notion of dual Rickart modules. A number of characterizations of dual Rickart modules are provided. It is shown that the class of rings R for which every right R-module is dual Rickart is precisely that of semisimple artinian rings, the class of rings R for which every finitely generated free R-module is dual Rickart is exactly that of von Neumann regular rings, while the class of rings R for which every injective R-module is dual Rickart is precisely that of right hereditary ones. We show that the endomorphism ring of a dual Rickart module is always left Rickart and obtain conditions for the converse to hold true. We prove that a dual Rickart module with no infinite set of nonzero orthogonal idempotents in its endomorphism ring is a dual Baer module. A structure theorem for a finitely generated dual Rickart module over a commutative noetherian ring is provided. It is shown that, while a direct summand of a dual Rickart module inherits the property, direct sums of dual Rickart modules do not. We introduce the notion of relative dual Rickart property and show that if M-i is M-j-projective for all i > j is an element of I = {1, 2, ..., n} then circle plus(n)(i=1) M-i is a dual Rickart module if and only if M-i is M-j-d-Rickart for all i, j is an element of I. Other instances of when a direct sum of dual Rickart modules is dual Rickart, are included. Examples which delineate the concepts and results are provided.
引用
收藏
页码:4036 / 4058
页数:23
相关论文
共 50 条
  • [1] On dual Rickart modules and weak dual Rickart modules
    Tutuncu, Derya Keskin
    Ertas, Nil Orhan
    Tribak, Rachid
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 25 (02): : 200 - 214
  • [2] On a Class of Dual Rickart Modules
    R. Tribak
    Ukrainian Mathematical Journal, 2020, 72 : 1118 - 1130
  • [3] On a Class of Dual Rickart Modules
    Tribak, R.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (07) : 1118 - 1130
  • [4] ON WEAK DUAL RICKART MODULES AND DUAL BAER MODULES
    Tribak, Rachid
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (08) : 3190 - 3206
  • [5] t-Rickart and Dual t-Rickart Modules
    Asgari, Sh.
    Haghany, A.
    ALGEBRA COLLOQUIUM, 2015, 22 : 849 - 870
  • [6] T-DUAL RICKART MODULES
    Atani, S. Ebrahimi
    Khoramdel, M.
    Hesari, S. Dolati Pish
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (03) : 627 - 642
  • [7] DUAL RICKART (BAER) MODULES AND PRERADICALS
    Asgari, S.
    Talebi, Y.
    Hamzekolaee, A. r. moniri
    JOURNAL OF ALGEBRAIC SYSTEMS, 2024, 12 (01):
  • [8] Strongly lifting modules and strongly dual Rickart modules
    Wang, Yongduo
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 219 - 229
  • [9] Strongly lifting modules and strongly dual Rickart modules
    Yongduo Wang
    Frontiers of Mathematics in China, 2017, 12 : 219 - 229
  • [10] Fully invariant submodules for constructing dual Rickart modules and dual Baer modules
    Amouzegar, Tayyabeh
    Hamzekolaee, Ali Reza Moniri
    Tercan, Adnan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (03): : 295 - 306