DUAL RICKART MODULES

被引:79
|
作者
Lee, Gangyong [2 ]
Rizvi, S. Tariq [1 ]
Roman, Cosmin S. [1 ]
机构
[1] Ohio State Univ, Dept Math, Lima, OH 45804 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Dual Baer modules; Endomorphism rings; Idempotents and annihilator; Rickart and Baer rings and modules; von Neumann regular rings; ENDOMORPHISM-RINGS; BAER; EXTENSIONS;
D O I
10.1080/00927872.2010.515639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rickart property for modules has been studied recently. In this article, we introduce and study the notion of dual Rickart modules. A number of characterizations of dual Rickart modules are provided. It is shown that the class of rings R for which every right R-module is dual Rickart is precisely that of semisimple artinian rings, the class of rings R for which every finitely generated free R-module is dual Rickart is exactly that of von Neumann regular rings, while the class of rings R for which every injective R-module is dual Rickart is precisely that of right hereditary ones. We show that the endomorphism ring of a dual Rickart module is always left Rickart and obtain conditions for the converse to hold true. We prove that a dual Rickart module with no infinite set of nonzero orthogonal idempotents in its endomorphism ring is a dual Baer module. A structure theorem for a finitely generated dual Rickart module over a commutative noetherian ring is provided. It is shown that, while a direct summand of a dual Rickart module inherits the property, direct sums of dual Rickart modules do not. We introduce the notion of relative dual Rickart property and show that if M-i is M-j-projective for all i > j is an element of I = {1, 2, ..., n} then circle plus(n)(i=1) M-i is a dual Rickart module if and only if M-i is M-j-d-Rickart for all i, j is an element of I. Other instances of when a direct sum of dual Rickart modules is dual Rickart, are included. Examples which delineate the concepts and results are provided.
引用
收藏
页码:4036 / 4058
页数:23
相关论文
共 50 条
  • [21] On π-Endo.Rickart Modules
    Maleki, Y.
    Moussavi, A.
    Kara, Y.
    IRANIAN JOURNAL OF SCIENCE, 2024,
  • [22] π-Rickart and dual π-Rickart objects in abelian categories
    Crivei, Septimiu
    Olteanu, Gabriela
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (12)
  • [23] PURELY BAER MODULES AND PURELY RICKART MODULES
    Atani, S. Ebrahimi
    Khoramdel, M.
    Pishhesari, S. Dolati
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 63 - 76
  • [24] SOME PROPERTIES OF RICKART MODULES
    Ungor, B.
    Kafkas, G.
    Halicioglu, S.
    Harmanci, A.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2012, 61 (02): : 1 - 8
  • [25] T-RICKART MODULES
    Atani, S. Ebrahimi
    Khoramdel, M.
    Hesari, S. Dolati Pish
    COLLOQUIUM MATHEMATICUM, 2012, 128 (01) : 87 - 100
  • [26] CS-Rickart modules
    Abyzov, A. N.
    Nhan, T. H. N.
    RUSSIAN MATHEMATICS, 2014, 58 (05) : 48 - 52
  • [27] Rickart and Dual Rickart Objects in Abelian Categories
    Septimiu Crivei
    Arda Kör
    Applied Categorical Structures, 2016, 24 : 797 - 824
  • [28] Direct sums of Rickart modules
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    JOURNAL OF ALGEBRA, 2012, 353 (01) : 62 - 78
  • [29] CS-Rickart Modules
    Abyzov, A. N.
    Nhan, T. H. N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2014, 35 (04) : 317 - 326
  • [30] Rickart and Dual Rickart Objects in Abelian Categories
    Crivei, Septimiu
    Kor, Arda
    APPLIED CATEGORICAL STRUCTURES, 2016, 24 (06) : 797 - 824