SOME PROPERTIES OF RICKART MODULES

被引:0
|
作者
Ungor, B.
Kafkas, G.
Halicioglu, S.
Harmanci, A.
机构
关键词
Rickart modules; symmetric modules; reduced modules; rigid modules; semicommutative modules; Armendariz modules;
D O I
10.1501/Commua1_0000000675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an arbitrary ring with identity and M a right R-module with S = End( R)(M). Following [8], the module M is called Rickart if for any f( )is an element of S, r(M)(f) = eM for some e(2) = e is an element of S, equivalently, Kerf is a direct summand of M. In this paper, we continue to investigate properties of Rickart modules. For a Rickart module M, we prove that M is S-rigid (resp., S-reduced, S-symmetric, S-semicommutative, S-Armendariz) if and only if its endomorphism ring S is rigid (resp., reduced, symmetric, semicommutative, Armendariz). We also prove that if M[x] is a Rickart module with respect to S[x], then M is Rickart, the converse holds if M is S-Armendariz. Among others it is also shown that M is a Rickart module if and only if every right R-module is M-principally projective.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] On dual Rickart modules and weak dual Rickart modules
    Tutuncu, Derya Keskin
    Ertas, Nil Orhan
    Tribak, Rachid
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 25 (02): : 200 - 214
  • [2] Σ-Rickart modules
    Lee, Gangyong
    Medina-Barcenas, Mauricio
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (11)
  • [3] RICKART MODULES
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (11) : 4005 - 4027
  • [4] ON RICKART MODULES
    Agayev, N.
    Halicioglu, S.
    Harmanci, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (02) : 433 - 445
  • [5] Finite Σ-Rickart modules
    Lee, Gangyong
    Medina-Barcenas, Mauricio
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (09) : 4074 - 4094
  • [6] On weak Rickart modules
    Tutuncu, Derya Keskin
    Ertas, Nil Orhan
    Tribak, Rachid
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (09)
  • [7] A Generalization of Rickart Modules
    Ungor, Burcu
    Halicioglu, Sait
    Harmanci, Abdullah
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (02) : 303 - 318
  • [8] DUAL RICKART MODULES
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4036 - 4058
  • [9] On π-Endo.Rickart Modules
    Maleki, Y.
    Moussavi, A.
    Kara, Y.
    IRANIAN JOURNAL OF SCIENCE, 2024,
  • [10] t-Rickart and Dual t-Rickart Modules
    Asgari, Sh.
    Haghany, A.
    ALGEBRA COLLOQUIUM, 2015, 22 : 849 - 870