SOME PROPERTIES OF RICKART MODULES

被引:0
|
作者
Ungor, B.
Kafkas, G.
Halicioglu, S.
Harmanci, A.
机构
关键词
Rickart modules; symmetric modules; reduced modules; rigid modules; semicommutative modules; Armendariz modules;
D O I
10.1501/Commua1_0000000675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an arbitrary ring with identity and M a right R-module with S = End( R)(M). Following [8], the module M is called Rickart if for any f( )is an element of S, r(M)(f) = eM for some e(2) = e is an element of S, equivalently, Kerf is a direct summand of M. In this paper, we continue to investigate properties of Rickart modules. For a Rickart module M, we prove that M is S-rigid (resp., S-reduced, S-symmetric, S-semicommutative, S-Armendariz) if and only if its endomorphism ring S is rigid (resp., reduced, symmetric, semicommutative, Armendariz). We also prove that if M[x] is a Rickart module with respect to S[x], then M is Rickart, the converse holds if M is S-Armendariz. Among others it is also shown that M is a Rickart module if and only if every right R-module is M-principally projective.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [11] PURELY BAER MODULES AND PURELY RICKART MODULES
    Atani, S. Ebrahimi
    Khoramdel, M.
    Pishhesari, S. Dolati
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 63 - 76
  • [12] On a Class of Dual Rickart Modules
    Tribak, R.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (07) : 1118 - 1130
  • [13] On a Class of Dual Rickart Modules
    R. Tribak
    Ukrainian Mathematical Journal, 2020, 72 : 1118 - 1130
  • [14] T-RICKART MODULES
    Atani, S. Ebrahimi
    Khoramdel, M.
    Hesari, S. Dolati Pish
    COLLOQUIUM MATHEMATICUM, 2012, 128 (01) : 87 - 100
  • [15] CS-Rickart modules
    Abyzov, A. N.
    Nhan, T. H. N.
    RUSSIAN MATHEMATICS, 2014, 58 (05) : 48 - 52
  • [16] Direct sums of Rickart modules
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    JOURNAL OF ALGEBRA, 2012, 353 (01) : 62 - 78
  • [17] CS-Rickart Modules
    Abyzov, A. N.
    Nhan, T. H. N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2014, 35 (04) : 317 - 326
  • [18] Strongly lifting modules and strongly dual Rickart modules
    Wang, Yongduo
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (01) : 219 - 229
  • [19] T-DUAL RICKART MODULES
    Atani, S. Ebrahimi
    Khoramdel, M.
    Hesari, S. Dolati Pish
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (03) : 627 - 642
  • [20] ON WEAK DUAL RICKART MODULES AND DUAL BAER MODULES
    Tribak, Rachid
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (08) : 3190 - 3206