SOME PROPERTIES OF RICKART MODULES

被引:0
|
作者
Ungor, B.
Kafkas, G.
Halicioglu, S.
Harmanci, A.
机构
关键词
Rickart modules; symmetric modules; reduced modules; rigid modules; semicommutative modules; Armendariz modules;
D O I
10.1501/Commua1_0000000675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an arbitrary ring with identity and M a right R-module with S = End( R)(M). Following [8], the module M is called Rickart if for any f( )is an element of S, r(M)(f) = eM for some e(2) = e is an element of S, equivalently, Kerf is a direct summand of M. In this paper, we continue to investigate properties of Rickart modules. For a Rickart module M, we prove that M is S-rigid (resp., S-reduced, S-symmetric, S-semicommutative, S-Armendariz) if and only if its endomorphism ring S is rigid (resp., reduced, symmetric, semicommutative, Armendariz). We also prove that if M[x] is a Rickart module with respect to S[x], then M is Rickart, the converse holds if M is S-Armendariz. Among others it is also shown that M is a Rickart module if and only if every right R-module is M-principally projective.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [41] Some properties of graded local cohomology modules
    Rotthaus, C
    Sega, LM
    JOURNAL OF ALGEBRA, 2005, 283 (01) : 232 - 247
  • [42] PROPERTIES OF MODULES AND RINGS RELATIVE TO SOME MATRICES
    Zhang, Xiaoxiang
    Chen, Jianlong
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (10) : 3682 - 3707
  • [43] SOME PROPERTIES OF r-SUPPLEMENTED MODULES
    Nebiyev, Celil
    Sokmez, Nurhan
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (02)
  • [44] <bold>ROUGH MODULES AND THEIR SOME PROPERTIES</bold>
    Zhang, Qun-Feng
    Fu, Ai-Min
    Zhao, Shi-Xin
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 2290 - +
  • [45] SOME PROPERTIES OF QUASI-INJECTIVE MODULES
    TISSERON, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (23): : 1377 - &
  • [46] On some properties of Malcev-Neumann modules
    Zhao, Renyu
    Liu, Zhonckui
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (03) : 445 - 456
  • [47] SOME PROPERTIES OF THE ZARISKI TOPOLOGY OF MULTIPLICATION MODULES
    Ameri, Reza
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (02): : 337 - 344
  • [48] Some Properties of n-semidualizing Modules
    Tony Se
    Acta Mathematica Vietnamica, 2023, 48 : 343 - 358
  • [49] ON SOME PROPERTIES OF GAMMA-FINITE MODULES
    IWASAWA, K
    ANNALS OF MATHEMATICS, 1959, 70 (02) : 291 - 312
  • [50] SOME PROPERTIES OF GR-MULTIPLICATION MODULES
    Park, Seungkook
    KOREAN JOURNAL OF MATHEMATICS, 2012, 20 (03): : 315 - 321