DUAL RICKART MODULES

被引:79
|
作者
Lee, Gangyong [2 ]
Rizvi, S. Tariq [1 ]
Roman, Cosmin S. [1 ]
机构
[1] Ohio State Univ, Dept Math, Lima, OH 45804 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Dual Baer modules; Endomorphism rings; Idempotents and annihilator; Rickart and Baer rings and modules; von Neumann regular rings; ENDOMORPHISM-RINGS; BAER; EXTENSIONS;
D O I
10.1080/00927872.2010.515639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rickart property for modules has been studied recently. In this article, we introduce and study the notion of dual Rickart modules. A number of characterizations of dual Rickart modules are provided. It is shown that the class of rings R for which every right R-module is dual Rickart is precisely that of semisimple artinian rings, the class of rings R for which every finitely generated free R-module is dual Rickart is exactly that of von Neumann regular rings, while the class of rings R for which every injective R-module is dual Rickart is precisely that of right hereditary ones. We show that the endomorphism ring of a dual Rickart module is always left Rickart and obtain conditions for the converse to hold true. We prove that a dual Rickart module with no infinite set of nonzero orthogonal idempotents in its endomorphism ring is a dual Baer module. A structure theorem for a finitely generated dual Rickart module over a commutative noetherian ring is provided. It is shown that, while a direct summand of a dual Rickart module inherits the property, direct sums of dual Rickart modules do not. We introduce the notion of relative dual Rickart property and show that if M-i is M-j-projective for all i > j is an element of I = {1, 2, ..., n} then circle plus(n)(i=1) M-i is a dual Rickart module if and only if M-i is M-j-d-Rickart for all i, j is an element of I. Other instances of when a direct sum of dual Rickart modules is dual Rickart, are included. Examples which delineate the concepts and results are provided.
引用
收藏
页码:4036 / 4058
页数:23
相关论文
共 50 条
  • [31] Module decompositions via Rickart modules
    Harmanci, A.
    Ungor, B.
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 26 (01): : 47 - 64
  • [32] F-CS-RICKART MODULES
    Kaewwangsakoon, Julalak
    Pianskool, Sajee
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2020, 45 (01): : 29 - 54
  • [33] (Ω)under-tilde-RICKART MODULES
    Lee, Gangyong
    Rizvi, S. Tariq
    Roman, Cosmin S.
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (05) : 2124 - 2151
  • [34] Rickart and Dual Rickart Objects in Abelian Categories: Transfer via Functors
    Crivei, Septimiu
    Olteanu, Gabriela
    APPLIED CATEGORICAL STRUCTURES, 2018, 26 (04) : 681 - 698
  • [35] Purely Rickart and Dual Purely Rickart Objects in Grothendieck Categories
    Sultan Eylem Toksoy
    Mediterranean Journal of Mathematics, 2021, 18
  • [36] Weak Rickart and dual weak Rickart objects in abelian categories
    Crivei, Septimiu
    Tutuncu, Derya Keskin
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) : 2912 - 2926
  • [37] Purely Rickart and Dual Purely Rickart Objects in Grothendieck Categories
    Toksoy, Sultan Eylem
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [38] 单dual Rickart模
    王永铎
    马亚军
    山东大学学报(理学版), 2017, (12) : 5 - 9
  • [39] T-Dual Rickart模
    霍志佳
    王旭
    兰州交通大学学报, 2014, 33 (03) : 74 - 76
  • [40] CS-Rickart and dual CS-Rickart objects in abelian categories
    Crivei, Septimiu
    Radu, Simona Maria
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 29 (01) : 97 - 120