DUAL RICKART MODULES

被引:79
|
作者
Lee, Gangyong [2 ]
Rizvi, S. Tariq [1 ]
Roman, Cosmin S. [1 ]
机构
[1] Ohio State Univ, Dept Math, Lima, OH 45804 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Dual Baer modules; Endomorphism rings; Idempotents and annihilator; Rickart and Baer rings and modules; von Neumann regular rings; ENDOMORPHISM-RINGS; BAER; EXTENSIONS;
D O I
10.1080/00927872.2010.515639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Rickart property for modules has been studied recently. In this article, we introduce and study the notion of dual Rickart modules. A number of characterizations of dual Rickart modules are provided. It is shown that the class of rings R for which every right R-module is dual Rickart is precisely that of semisimple artinian rings, the class of rings R for which every finitely generated free R-module is dual Rickart is exactly that of von Neumann regular rings, while the class of rings R for which every injective R-module is dual Rickart is precisely that of right hereditary ones. We show that the endomorphism ring of a dual Rickart module is always left Rickart and obtain conditions for the converse to hold true. We prove that a dual Rickart module with no infinite set of nonzero orthogonal idempotents in its endomorphism ring is a dual Baer module. A structure theorem for a finitely generated dual Rickart module over a commutative noetherian ring is provided. It is shown that, while a direct summand of a dual Rickart module inherits the property, direct sums of dual Rickart modules do not. We introduce the notion of relative dual Rickart property and show that if M-i is M-j-projective for all i > j is an element of I = {1, 2, ..., n} then circle plus(n)(i=1) M-i is a dual Rickart module if and only if M-i is M-j-d-Rickart for all i, j is an element of I. Other instances of when a direct sum of dual Rickart modules is dual Rickart, are included. Examples which delineate the concepts and results are provided.
引用
收藏
页码:4036 / 4058
页数:23
相关论文
共 50 条
  • [41] Rickart and Dual Rickart Objects in Abelian Categories: Transfer via Functors
    Septimiu Crivei
    Gabriela Olteanu
    Applied Categorical Structures, 2018, 26 : 681 - 698
  • [42] s.Baer and s.Rickart Modules
    Birkenmeier, Gary F.
    LeBlanc, Richard L.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (08)
  • [43] Weak Rickart and dual weak Rickart objects in abelian categories: transfer via functors
    Crivei, Septimiu
    Tutuncu, Derya Keskin
    Olteanu, Gabriela
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (02): : 189 - 207
  • [44] Strongly CS-Rickart and dual strongly CS-Rickart objects in abelian categories
    Crivei, Septimiu
    Radu, Simona Maria
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (03) : 903 - 919
  • [45] Transfer of CS-Rickart and dual CS-Rickart properties via functors between abelian categories
    Crivei, Septimiu
    Radu, Simona Maria
    QUAESTIONES MATHEMATICAE, 2022, 45 (07) : 993 - 1011
  • [46] THE DEGENERATIONS FOR MODULES AND DUAL MODULES
    Darmajid
    Muchtadi-Alamsyah, Intan
    Irawati
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2012, 26 (01): : 65 - 73
  • [47] τ-Rickart模和相对τ-Rickart模
    李煜彦
    何东林
    西北师范大学学报(自然科学版), 2020, 56 (06) : 24 - 27
  • [48] DUAL MODULES
    MITCHELL, WJR
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1978, 84 (JUL) : 21 - 24
  • [49] τ-Rickart模
    李煜彦
    西北民族大学学报(自然科学版), 2021, 42 (02) : 1 - 3+50
  • [50] π-Rickart rings
    Birkenmeier, Gary F.
    Kara, Yeliz
    Tercan, Adnan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (08)