A Partitioned Version of the Erdös–Szekeres Theorem for Quadrilaterals

被引:0
|
作者
Attila Póor
机构
[1] Rényi Institute of Mathematics,
[2] Hungarian Academy of Sciences,undefined
[3] PO Box 127,undefined
[4] 1364 Budapest,undefined
来源
关键词
Type Lemma; Szekeres Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a partitioned version of the Erdös–Szekeres theorem for the case $k = 4$: any finite set $X \subset \bbbr^2$ of points in general position can be partitioned into sets $X_0, X_{ij}$ where $i=1,2,3,4$ and $j=1,\ldots,26$, so that $|X_{1j}|=|X_{2j}|=|X_{3j}|=|X_{4j}|$, $|X_0|\leq 4$ and for all $j$ every transversal $\{x_1,x_2,x_3,x_4\}$, $x_1 \in X_{1j}, x_2 \in X_{2j},x_3 \in X_{3j}, x_4 \in X_{4j}$, is in convex position. In order to prove this, we show another theorem, the partitioned version of the “same type lemma”, which was proved by Bárány and Valtr.
引用
收藏
页码:321 / 336
页数:15
相关论文
共 50 条
  • [21] On increasing subsequences of minimal Erdös-Szekeres permutations
    Zhong Gen Su
    Acta Mathematica Sinica, English Series, 2011, 27 : 1573 - 1580
  • [22] Average growth of Lp norms of Erdős–Szekeres polynomials
    C. Billsborough
    S. Gold
    E. Linder
    D. S. Lubinsky
    J. Yu
    Acta Mathematica Hungarica, 2022, 166 : 179 - 204
  • [23] Two Upper Bounds for the Erdős–Szekeres Number with Conditions
    Florian Strunk
    Discrete & Computational Geometry, 2013, 49 : 183 - 188
  • [24] THEOREM OF SZEKERES
    GREENBER.PJ
    STUDIES IN APPLIED MATHEMATICS, 1972, 51 (04) : 415 - 416
  • [25] Spectral theory of extended Harper’s model and a question by Erdős and Szekeres
    A. Avila
    S. Jitomirskaya
    C. A. Marx
    Inventiones mathematicae, 2017, 210 : 283 - 339
  • [26] A remark on a theorem of Erdős
    J. H. Schmerl
    Acta Mathematica Hungarica, 2018, 155 : 489 - 498
  • [27] More on an Erdős–Szekeres-Type Problem for Interior Points
    Xianglin Wei
    Ren Ding
    Discrete & Computational Geometry, 2009, 42 : 640 - 653
  • [28] Erdős-Szekeres type theorems for ordered uniform matchings
    Dudek, Andrzej
    Grytczuk, Jaroslaw
    Rucinski, Andrzej
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2025, 170
  • [29] Erdős-Szekeres-Type Problems in the Real Projective Plane
    Balko, Martin
    Scheucher, Manfred
    Valtr, Pavel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 72 (04) : 1545 - 1578
  • [30] Erdős–Szekeres-Type Theorems for Segments and Noncrossing Convex Sets
    János Pach
    Géza Tóth
    Geometriae Dedicata, 2000, 81 : 1 - 12