Average growth of Lp norms of Erdős–Szekeres polynomials

被引:0
|
作者
C. Billsborough
S. Gold
E. Linder
D. S. Lubinsky
J. Yu
机构
[1] Georgia Tech,School of Mathematics
[2] Haverford College,Department of Mathematics
[3] Rutgers University,School of Mathematics
[4] Pomona College,Department of Mathematics
来源
Acta Mathematica Hungarica | 2022年 / 166卷
关键词
Erdős–Szekeres product; polynomial; primary 42C05; 11C08; secondary 30C10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the average growth of pth powers of Lp noms on the unit circle of Erdős–Szekeres polynomials Pn({sj},z)=∏j=1n(1-zsj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}( \{ s_{j}\} ,z) = \prod_{j=1}^{n}(1-z^{s_{j}})$$\end{document} where 1≤s1,s2,…,sn≤M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leq s_{1},s_{2} , \ldots ,s_{n} \leq M$$\end{document} and M,n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M,n\rightarrow \infty $$\end{document}. In particular, we show the average growth is geometric and determine the precise geometric growth. We also analyze the variance.
引用
收藏
页码:179 / 204
页数:25
相关论文
共 50 条
  • [1] AVERAGE GROWTH OF Lp NORMS OF ERDOS-SZEKERES POLYNOMIALS
    Billsborough, C.
    Gold, S.
    Linder, E.
    Lubinsky, D. S.
    Yu, J.
    ACTA MATHEMATICA HUNGARICA, 2022, 166 (01) : 179 - 204
  • [2] AVERAGE MAHLER'S MEASURE AND Lp NORMS OF UNIMODULAR POLYNOMIALS
    Choi, Kwok-Kwong Stephen
    Mossinghoff, Michael J.
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 252 (01) : 31 - 50
  • [3] On a paper of Erdös and Szekeres
    Jean Bourgain
    Mei-Chu Chang
    Journal d'Analyse Mathématique, 2018, 136 : 253 - 271
  • [4] Erdős–Szekeres Without Induction
    Sergey Norin
    Yelena Yuditsky
    Discrete & Computational Geometry, 2016, 55 : 963 - 971
  • [5] Erdős-Szekeres Tableaux
    Shaun V. Ault
    Benjamin Shemmer
    Order, 2014, 31 : 391 - 402
  • [6] Erdős–Szekeres Theorem for Lines
    Imre Bárány
    Edgardo Roldán-Pensado
    Géza Tóth
    Discrete & Computational Geometry, 2015, 54 : 669 - 685
  • [7] On the Erdös-Szekeres problem
    V. A. Koshelev
    Doklady Mathematics, 2007, 76 : 603 - 605
  • [8] Average norms of polynomials
    Mansour, T
    ADVANCES IN APPLIED MATHEMATICS, 2004, 32 (04) : 698 - 708
  • [9] The Erdős-Szekeres theorem and congruences
    V. A. Koshelev
    Mathematical Notes, 2010, 87 : 537 - 542
  • [10] The Partitioned Version of the Erdős—Szekeres Theorem
    Discrete & Computational Geometry, 2002, 28 : 625 - 637