Average growth of Lp norms of Erdős–Szekeres polynomials

被引:0
|
作者
C. Billsborough
S. Gold
E. Linder
D. S. Lubinsky
J. Yu
机构
[1] Georgia Tech,School of Mathematics
[2] Haverford College,Department of Mathematics
[3] Rutgers University,School of Mathematics
[4] Pomona College,Department of Mathematics
来源
Acta Mathematica Hungarica | 2022年 / 166卷
关键词
Erdős–Szekeres product; polynomial; primary 42C05; 11C08; secondary 30C10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the average growth of pth powers of Lp noms on the unit circle of Erdős–Szekeres polynomials Pn({sj},z)=∏j=1n(1-zsj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}( \{ s_{j}\} ,z) = \prod_{j=1}^{n}(1-z^{s_{j}})$$\end{document} where 1≤s1,s2,…,sn≤M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leq s_{1},s_{2} , \ldots ,s_{n} \leq M$$\end{document} and M,n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M,n\rightarrow \infty $$\end{document}. In particular, we show the average growth is geometric and determine the precise geometric growth. We also analyze the variance.
引用
收藏
页码:179 / 204
页数:25
相关论文
共 50 条
  • [21] A Positive Fraction Erdős–Szekeres Theorem and Its Applications
    Andrew Suk
    Ji Zeng
    Discrete & Computational Geometry, 2024, 71 (1) : 308 - 325
  • [22] Two Upper Bounds for the Erdős–Szekeres Number with Conditions
    Florian Strunk
    Discrete & Computational Geometry, 2013, 49 : 183 - 188
  • [23] Asymptotics of Lp-norms of Laguerre polynomials
    Aptekarev, A. I.
    Tulyakov, D. N.
    RUSSIAN MATHEMATICAL SURVEYS, 2015, 70 (05) : 955 - 957
  • [24] Spectral theory of extended Harper’s model and a question by Erdős and Szekeres
    A. Avila
    S. Jitomirskaya
    C. A. Marx
    Inventiones mathematicae, 2017, 210 : 283 - 339
  • [25] More on an Erdős–Szekeres-Type Problem for Interior Points
    Xianglin Wei
    Ren Ding
    Discrete & Computational Geometry, 2009, 42 : 640 - 653
  • [26] Erdős-Szekeres type theorems for ordered uniform matchings
    Dudek, Andrzej
    Grytczuk, Jaroslaw
    Rucinski, Andrzej
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2025, 170
  • [27] Erdős-Szekeres-Type Problems in the Real Projective Plane
    Balko, Martin
    Scheucher, Manfred
    Valtr, Pavel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 72 (04) : 1545 - 1578
  • [28] Lower bounds for norms of products of polynomials on Lp spaces
    Carando, Daniel
    Pinasco, Damian
    Tomas Rodriguez, Jorge
    STUDIA MATHEMATICA, 2013, 214 (02) : 157 - 166
  • [29] Lp-norms and information entropies of Charlier polynomials
    Larsson-Cohn, L
    JOURNAL OF APPROXIMATION THEORY, 2002, 117 (01) : 152 - 178
  • [30] LP-NORMS OF POLYNOMIALS WITH POSITIVE REAL PART
    BROWN, J
    GOLDSTEIN, M
    MCDONALD, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) : 150 - 153