Two Upper Bounds for the Erdős–Szekeres Number with Conditions

被引:0
|
作者
Florian Strunk
机构
[1] Universität Osnabrück,Fachbereich 6: Mathematik/Informatik
来源
关键词
Erdős-Szekeres problem; Discrete geometry; Combinatorial convexity;
D O I
暂无
中图分类号
学科分类号
摘要
We use a projective transformation method of Tóth and Valtr to show that a certain number of points in general position in the plane contain the vertex set of a convex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-gon if their convex hull is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n\!-\!1)$$\end{document}-gon.
引用
收藏
页码:183 / 188
页数:5
相关论文
共 50 条
  • [1] Two Upper Bounds for the Erdos-Szekeres Number with Conditions
    Strunk, Florian
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (02) : 183 - 188
  • [2] An Improved Upper Bound for the Erdős–Szekeres Conjecture
    Hossein Nassajian Mojarrad
    Georgios Vlachos
    Discrete & Computational Geometry, 2016, 56 : 165 - 180
  • [3] On a paper of Erdös and Szekeres
    Jean Bourgain
    Mei-Chu Chang
    Journal d'Analyse Mathématique, 2018, 136 : 253 - 271
  • [4] Erdős–Szekeres Without Induction
    Sergey Norin
    Yelena Yuditsky
    Discrete & Computational Geometry, 2016, 55 : 963 - 971
  • [5] Erdős-Szekeres Tableaux
    Shaun V. Ault
    Benjamin Shemmer
    Order, 2014, 31 : 391 - 402
  • [6] Erdős–Szekeres Theorem for Lines
    Imre Bárány
    Edgardo Roldán-Pensado
    Géza Tóth
    Discrete & Computational Geometry, 2015, 54 : 669 - 685
  • [7] On the Erdös-Szekeres problem
    V. A. Koshelev
    Doklady Mathematics, 2007, 76 : 603 - 605
  • [8] Two upper bounds for the Erd?s-Hooley Delta-function
    Régis de la Bretèche
    Gérald Tenenbaum
    Science China(Mathematics), 2023, 66 (12) : 2683 - 2692
  • [9] Two upper bounds for the Erdős-Hooley Delta-function
    Régis de la Bretèche
    Gérald Tenenbaum
    Science China Mathematics, 2023, 66 : 2683 - 2692
  • [10] The Erdős-Szekeres theorem and congruences
    V. A. Koshelev
    Mathematical Notes, 2010, 87 : 537 - 542