Two Upper Bounds for the Erdős–Szekeres Number with Conditions

被引:0
|
作者
Florian Strunk
机构
[1] Universität Osnabrück,Fachbereich 6: Mathematik/Informatik
来源
关键词
Erdős-Szekeres problem; Discrete geometry; Combinatorial convexity;
D O I
暂无
中图分类号
学科分类号
摘要
We use a projective transformation method of Tóth and Valtr to show that a certain number of points in general position in the plane contain the vertex set of a convex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-gon if their convex hull is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n\!-\!1)$$\end{document}-gon.
引用
收藏
页码:183 / 188
页数:5
相关论文
共 50 条
  • [31] Two smaller upper bounds of list injective chromatic number
    Bu, Yuehua
    Lu, Kai
    Yang, Sheng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (02) : 373 - 388
  • [32] Upper bounds on the coalition number
    Haynes, Teresa W.
    Hedetniemi, Jason T.
    Hedetniemi, Stephen T.
    Mcrae, Alice A.
    Mohan, Raghuveer
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 80 : 442 - 453
  • [34] Upper bounds on the balanced ⟨r, s⟩-domination number of a graph
    Roux, A.
    van Vuuren, J. H.
    DISCRETE APPLIED MATHEMATICS, 2014, 179 : 214 - 221
  • [35] Upper Bounds on the Total Domination Number
    Haynes, Teresa W.
    Henning, Michael A.
    ARS COMBINATORIA, 2009, 91 : 243 - 256
  • [36] Upper bounds on the bondage number of a graph
    Samodivkin, Vladimir
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (01) : 1 - 16
  • [37] Upper bounds of dynamic chromatic number
    Lai, HJ
    Montgomery, B
    Poon, H
    ARS COMBINATORIA, 2003, 68 : 193 - 201
  • [38] Improved Upper Bounds on the Crossing Number
    Dujmovic, Vida
    Kawarabayashi, Ken-ichi
    Mohar, Bojan
    Wood, David R.
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, : 375 - 384
  • [39] Upper bounds on Nusselt number at finite Prandtl number
    Choffrut, Antoine
    Nobili, Camilla
    Otto, Felix
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) : 3860 - 3880
  • [40] Fast Formal Proof of the Erdős–Szekeres Conjecture for Convex Polygons with at Most 6 Points
    Filip Marić
    Journal of Automated Reasoning, 2019, 62 : 301 - 329