Two Upper Bounds for the Erdős–Szekeres Number with Conditions

被引:0
|
作者
Florian Strunk
机构
[1] Universität Osnabrück,Fachbereich 6: Mathematik/Informatik
来源
关键词
Erdős-Szekeres problem; Discrete geometry; Combinatorial convexity;
D O I
暂无
中图分类号
学科分类号
摘要
We use a projective transformation method of Tóth and Valtr to show that a certain number of points in general position in the plane contain the vertex set of a convex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-gon if their convex hull is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n\!-\!1)$$\end{document}-gon.
引用
收藏
页码:183 / 188
页数:5
相关论文
共 50 条
  • [21] Erdős–Szekeres Theorem for Point Sets with Forbidden Subconfigurations
    Gyula Károlyi
    Géza Tóth
    Discrete & Computational Geometry, 2012, 48 : 441 - 452
  • [22] Average growth of Lp norms of Erdős–Szekeres polynomials
    C. Billsborough
    S. Gold
    E. Linder
    D. S. Lubinsky
    J. Yu
    Acta Mathematica Hungarica, 2022, 166 : 179 - 204
  • [23] A Positive Fraction Erdős–Szekeres Theorem and Its Applications
    Andrew Suk
    Ji Zeng
    Discrete & Computational Geometry, 2024, 71 (1) : 308 - 325
  • [24] Spectral theory of extended Harper’s model and a question by Erdős and Szekeres
    A. Avila
    S. Jitomirskaya
    C. A. Marx
    Inventiones mathematicae, 2017, 210 : 283 - 339
  • [25] More on an Erdős–Szekeres-Type Problem for Interior Points
    Xianglin Wei
    Ren Ding
    Discrete & Computational Geometry, 2009, 42 : 640 - 653
  • [26] Upper bounds for the domination number in graphs of diameter two
    Meierling, Dirk
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2014, 93 : 267 - 277
  • [27] Erdős-Szekeres type theorems for ordered uniform matchings
    Dudek, Andrzej
    Grytczuk, Jaroslaw
    Rucinski, Andrzej
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2025, 170
  • [28] Erdős-Szekeres-Type Problems in the Real Projective Plane
    Balko, Martin
    Scheucher, Manfred
    Valtr, Pavel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 72 (04) : 1545 - 1578
  • [29] Erdős–Szekeres-Type Theorems for Segments and Noncrossing Convex Sets
    János Pach
    Géza Tóth
    Geometriae Dedicata, 2000, 81 : 1 - 12
  • [30] Two smaller upper bounds of list injective chromatic number
    Yuehua Bu
    Kai Lu
    Sheng Yang
    Journal of Combinatorial Optimization, 2015, 29 : 373 - 388