Two Upper Bounds for the Erdős–Szekeres Number with Conditions

被引:0
|
作者
Florian Strunk
机构
[1] Universität Osnabrück,Fachbereich 6: Mathematik/Informatik
来源
关键词
Erdős-Szekeres problem; Discrete geometry; Combinatorial convexity;
D O I
暂无
中图分类号
学科分类号
摘要
We use a projective transformation method of Tóth and Valtr to show that a certain number of points in general position in the plane contain the vertex set of a convex \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-gon if their convex hull is an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n\!-\!1)$$\end{document}-gon.
引用
收藏
页码:183 / 188
页数:5
相关论文
共 50 条
  • [41] Application of upper and lower bounds for the domination number to Vizing's conjecture
    Clark, WE
    Ismail, MEH
    Suen, S
    ARS COMBINATORIA, 2003, 69 : 97 - 108
  • [42] Lower bounds in the combinatorial problem of Erdös and Lovász
    D. A. Shabanov
    Doklady Mathematics, 2010, 81 : 286 - 288
  • [43] Upper bounds on the upper signed total domination number of graphs
    Shan, Erfang
    Cheng, T. C. E.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1098 - 1103
  • [44] New upper bounds for the number of partitions into a given number of parts
    Merca, Mircea
    JOURNAL OF NUMBER THEORY, 2014, 142 : 298 - 304
  • [45] UPPER BOUNDS FOR THE NUMBER OF NUMBER FIELDS WITH ALTERNATING GALOIS GROUP
    Larson, Eric
    Rolen, Larry
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) : 499 - 503
  • [46] Upper bounds on the paired-domination number
    Chen, Xue-gang
    Shiu, Wai Chee
    Chan, Wai Hong
    APPLIED MATHEMATICS LETTERS, 2008, 21 (11) : 1194 - 1198
  • [47] Tight upper bounds on the number of candidate patterns
    Geerts, F
    Goethals, B
    Van den Bussche, J
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2005, 30 (02): : 333 - 363
  • [48] Upper bounds on the linear chromatic number of a graph
    Li, Chao
    Wang, Weifan
    Raspaud, Andre
    DISCRETE MATHEMATICS, 2011, 311 (04) : 232 - 238
  • [49] Upper and Lower Bounds on the Number of Disjunctive Forms
    Tatsumi, Hisayuki
    Miyakawa, Masahiro
    Mukaidono, Masao
    ISMVL 2006: 36TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, 2006, : 50 - +
  • [50] Upper bounds for the number of facets of a simplicial complex
    Herzog, J
    Hibi, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1579 - 1583