Monotone subsequence;
Erdős-Szekeres Tableau;
Total and partial order;
06A05;
06A06;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We explore a question related to the celebrated Erdős-Szekeres Theorem and develop a geometric approach to answer it. Our main object of study is the Erdős-Szekeres Tableau, or EST, of a number sequence. An EST is the sequence of integral points whose coordinates record the length of the longest increasing and longest decreasing subsequence ending at each element of the sequence. We define the Order Poset of an EST in order to answer the question: What information about the sequence can be recovered by its EST?
机构:
Umea Univ, Dept Math & Math Stat, Universitetstorget 4, SE-90187 Umea, SwedenUmea Univ, Dept Math & Math Stat, Universitetstorget 4, SE-90187 Umea, Sweden
Ciceksiz, Recep Altar
Jin, Zhihan
论文数: 0引用数: 0
h-index: 0
机构:
Swiss Fed Inst Technol, Dept Math, Zurich, SwitzerlandUmea Univ, Dept Math & Math Stat, Universitetstorget 4, SE-90187 Umea, Sweden
Jin, Zhihan
Raty, Eero
论文数: 0引用数: 0
h-index: 0
机构:
Umea Univ, Dept Math & Math Stat, Universitetstorget 4, SE-90187 Umea, SwedenUmea Univ, Dept Math & Math Stat, Universitetstorget 4, SE-90187 Umea, Sweden
Raty, Eero
Tomon, Istvan
论文数: 0引用数: 0
h-index: 0
机构:
Umea Univ, Dept Math & Math Stat, Universitetstorget 4, SE-90187 Umea, SwedenUmea Univ, Dept Math & Math Stat, Universitetstorget 4, SE-90187 Umea, Sweden