Erdős-Szekeres Tableaux

被引:0
|
作者
Shaun V. Ault
Benjamin Shemmer
机构
[1] Valdosta State University,Department of Mathematics and Computer Science
[2] Fordham University,Department of Mathematics
来源
Order | 2014年 / 31卷
关键词
Monotone subsequence; Erdős-Szekeres Tableau; Total and partial order; 06A05; 06A06;
D O I
暂无
中图分类号
学科分类号
摘要
We explore a question related to the celebrated Erdős-Szekeres Theorem and develop a geometric approach to answer it. Our main object of study is the Erdős-Szekeres Tableau, or EST, of a number sequence. An EST is the sequence of integral points whose coordinates record the length of the longest increasing and longest decreasing subsequence ending at each element of the sequence. We define the Order Poset of an EST in order to answer the question: What information about the sequence can be recovered by its EST?
引用
收藏
页码:391 / 402
页数:11
相关论文
共 50 条
  • [1] On the Erdös-Szekeres problem
    V. A. Koshelev
    Doklady Mathematics, 2007, 76 : 603 - 605
  • [2] The Erdős-Szekeres theorem and congruences
    V. A. Koshelev
    Mathematical Notes, 2010, 87 : 537 - 542
  • [3] Around Erdös-Szekeres problems
    V. A. Koshelev
    Doklady Mathematics, 2009, 79 : 360 - 361
  • [4] A Postscript on Erds-Szekeres Theorem
    张玉琴
    苑立平
    NortheasternMathematicalJournal, 2002, (04) : 319 - 322
  • [5] Exponential Erdős-Szekeres theorem for matrices
    Ciceksiz, Recep Altar
    Jin, Zhihan
    Raty, Eero
    Tomon, Istvan
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2024, 129 (03)
  • [6] AN ERDőS-SZEKERES TYPE PROBLEM IN THE PLANE
    Gyula Károlyi
    Géza Tóth
    Periodica Mathematica Hungarica, 2000, 39 (1-3) : 153 - 159
  • [7] Interior points in the Erdős-Szekeres theorems
    V. A. Koshelev
    Mathematical Notes, 2012, 91 : 542 - 557
  • [8] On increasing subsequences of minimal Erdös-Szekeres permutations
    Zhong Gen Su
    Acta Mathematica Sinica, English Series, 2011, 27 : 1573 - 1580
  • [9] Erdős-Szekeres type theorems for ordered uniform matchings
    Dudek, Andrzej
    Grytczuk, Jaroslaw
    Rucinski, Andrzej
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2025, 170
  • [10] On a paper of Erdös and Szekeres
    Jean Bourgain
    Mei-Chu Chang
    Journal d'Analyse Mathématique, 2018, 136 : 253 - 271