Erdős-Szekeres Tableaux

被引:0
|
作者
Shaun V. Ault
Benjamin Shemmer
机构
[1] Valdosta State University,Department of Mathematics and Computer Science
[2] Fordham University,Department of Mathematics
来源
Order | 2014年 / 31卷
关键词
Monotone subsequence; Erdős-Szekeres Tableau; Total and partial order; 06A05; 06A06;
D O I
暂无
中图分类号
学科分类号
摘要
We explore a question related to the celebrated Erdős-Szekeres Theorem and develop a geometric approach to answer it. Our main object of study is the Erdős-Szekeres Tableau, or EST, of a number sequence. An EST is the sequence of integral points whose coordinates record the length of the longest increasing and longest decreasing subsequence ending at each element of the sequence. We define the Order Poset of an EST in order to answer the question: What information about the sequence can be recovered by its EST?
引用
收藏
页码:391 / 402
页数:11
相关论文
共 50 条
  • [41] On the proof of Erdős’ inequality
    Lai-Yi Zhu
    Da-Peng Zhou
    Czechoslovak Mathematical Journal, 2017, 67 : 967 - 979
  • [42] On a Question of Erdős and Ulam
    Jozsef Solymosi
    Frank de Zeeuw
    Discrete & Computational Geometry, 2010, 43 : 393 - 401
  • [43] On a problem of Erdős and Graham
    Szabolcs Tengely
    Periodica Mathematica Hungarica, 2016, 72 : 23 - 28
  • [44] A remark on a theorem of Erdős
    J. H. Schmerl
    Acta Mathematica Hungarica, 2018, 155 : 489 - 498
  • [45] The erdős graph and the beast
    Paul M. B. Vitanyi
    The Mathematical Intelligencer, 1999, 21 : 54 - 63
  • [47] On Erdős's Proof of the Existence of Cages
    Vatter, Vincent
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (10): : 892 - 892
  • [48] On Erdős's Eulerian Trail Game
    Ákos Seress
    Tibor Szabó
    Graphs and Combinatorics, 1999, 15 : 233 - 237
  • [49] KULKARNI'S QUESTION AND ERDS CONJECTURE
    冯克勤
    魏权龄
    刘木兰
    ScienceBulletin, 1988, (22) : 1835 - 1840
  • [50] A variation of a conjecture due to Erdös and Sós
    Jian Hua Yin
    Jiong Sheng Li
    Acta Mathematica Sinica, English Series, 2009, 25 : 795 - 802