Erdős-Szekeres Tableaux

被引:0
|
作者
Shaun V. Ault
Benjamin Shemmer
机构
[1] Valdosta State University,Department of Mathematics and Computer Science
[2] Fordham University,Department of Mathematics
来源
Order | 2014年 / 31卷
关键词
Monotone subsequence; Erdős-Szekeres Tableau; Total and partial order; 06A05; 06A06;
D O I
暂无
中图分类号
学科分类号
摘要
We explore a question related to the celebrated Erdős-Szekeres Theorem and develop a geometric approach to answer it. Our main object of study is the Erdős-Szekeres Tableau, or EST, of a number sequence. An EST is the sequence of integral points whose coordinates record the length of the longest increasing and longest decreasing subsequence ending at each element of the sequence. We define the Order Poset of an EST in order to answer the question: What information about the sequence can be recovered by its EST?
引用
收藏
页码:391 / 402
页数:11
相关论文
共 50 条
  • [21] Average growth of Lp norms of Erdős–Szekeres polynomials
    C. Billsborough
    S. Gold
    E. Linder
    D. S. Lubinsky
    J. Yu
    Acta Mathematica Hungarica, 2022, 166 : 179 - 204
  • [22] A Positive Fraction Erdős–Szekeres Theorem and Its Applications
    Andrew Suk
    Ji Zeng
    Discrete & Computational Geometry, 2024, 71 (1) : 308 - 325
  • [23] Two Upper Bounds for the Erdős–Szekeres Number with Conditions
    Florian Strunk
    Discrete & Computational Geometry, 2013, 49 : 183 - 188
  • [24] Spectral theory of extended Harper’s model and a question by Erdős and Szekeres
    A. Avila
    S. Jitomirskaya
    C. A. Marx
    Inventiones mathematicae, 2017, 210 : 283 - 339
  • [25] More on an Erdős–Szekeres-Type Problem for Interior Points
    Xianglin Wei
    Ren Ding
    Discrete & Computational Geometry, 2009, 42 : 640 - 653
  • [26] Erdős-Szekeres-Type Problems in the Real Projective Plane
    Balko, Martin
    Scheucher, Manfred
    Valtr, Pavel
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 72 (04) : 1545 - 1578
  • [27] Erdős–Szekeres-Type Theorems for Segments and Noncrossing Convex Sets
    János Pach
    Géza Tóth
    Geometriae Dedicata, 2000, 81 : 1 - 12
  • [28] Fast Formal Proof of the Erdős–Szekeres Conjecture for Convex Polygons with at Most 6 Points
    Filip Marić
    Journal of Automated Reasoning, 2019, 62 : 301 - 329
  • [29] On a conjecture of Erdős
    T. Hessami Pilehrood
    K. Hessami Pilehrood
    Mathematical Notes, 2008, 83 : 281 - 284
  • [30] On a Problem of Erdős
    G. Dombi
    B. Valkó
    Acta Mathematica Hungarica, 1997, 77 : 47 - 56