We study the average growth of pth powers of Lp noms on the
unit circle of Erdős–Szekeres polynomials Pn({sj},z)=∏j=1n(1-zsj)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P_{n}( \{ s_{j}\} ,z) = \prod_{j=1}^{n}(1-z^{s_{j}})$$\end{document}
where 1≤s1,s2,…,sn≤M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1 \leq s_{1},s_{2} , \ldots ,s_{n} \leq M$$\end{document} and M,n→∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M,n\rightarrow \infty $$\end{document}. In
particular, we show the average growth is geometric and determine the
precise geometric growth. We also analyze the variance.