Average growth of Lp norms of Erdős–Szekeres polynomials

被引:0
|
作者
C. Billsborough
S. Gold
E. Linder
D. S. Lubinsky
J. Yu
机构
[1] Georgia Tech,School of Mathematics
[2] Haverford College,Department of Mathematics
[3] Rutgers University,School of Mathematics
[4] Pomona College,Department of Mathematics
来源
Acta Mathematica Hungarica | 2022年 / 166卷
关键词
Erdős–Szekeres product; polynomial; primary 42C05; 11C08; secondary 30C10;
D O I
暂无
中图分类号
学科分类号
摘要
We study the average growth of pth powers of Lp noms on the unit circle of Erdős–Szekeres polynomials Pn({sj},z)=∏j=1n(1-zsj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}( \{ s_{j}\} ,z) = \prod_{j=1}^{n}(1-z^{s_{j}})$$\end{document} where 1≤s1,s2,…,sn≤M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leq s_{1},s_{2} , \ldots ,s_{n} \leq M$$\end{document} and M,n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M,n\rightarrow \infty $$\end{document}. In particular, we show the average growth is geometric and determine the precise geometric growth. We also analyze the variance.
引用
收藏
页码:179 / 204
页数:25
相关论文
共 50 条
  • [31] Erdős–Szekeres-Type Theorems for Segments and Noncrossing Convex Sets
    János Pach
    Géza Tóth
    Geometriae Dedicata, 2000, 81 : 1 - 12
  • [32] Lp-Norms and Mahler's Measure of Polynomials on the n-Dimensional Torus
    Defant, Andreas
    Mastylo, Mieczyslaw
    CONSTRUCTIVE APPROXIMATION, 2016, 44 (01) : 87 - 101
  • [33] Sharpening of Erdős–Lax Inequality for Polynomials
    N. A. Rather
    Aijaz Bhat
    M. Shafi
    Russian Mathematics, 2023, 67 : 65 - 72
  • [34] Erd?s Type Inequality for Lorentz Polynomials
    Laiyi Zhu
    Dapeng Zhou
    Zhiyong Huang
    Analysis in Theory and Applications, 2018, 34 (03) : 232 - 240
  • [35] On some inequalities involving the zeros and weighted Lp norms of polynomials
    Shen, LC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (01) : 53 - 57
  • [36] Asymptotics (p → ∞) of Lp-norms of hypergeometric orthogonal polynomials
    Dehesa, J. S.
    Guerrero, A.
    Lopez, J. L.
    Sanchez-Moreno, P.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2014, 52 (01) : 283 - 300
  • [37] Lp-norms of Hermite polynomials and an extremal problem on Wiener chaos
    Larsson-Cohn, L
    ARKIV FOR MATEMATIK, 2002, 40 (01): : 133 - 144
  • [38] Fast Formal Proof of the Erdős–Szekeres Conjecture for Convex Polygons with at Most 6 Points
    Filip Marić
    Journal of Automated Reasoning, 2019, 62 : 301 - 329
  • [39] Logarithmic Sobolev inequalities and the growth of Lp norms
    Rothaus, OS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (08) : 2309 - 2314
  • [40] Lp INEQUALITIES FOR THE GROWTH OF POLYNOMIALS WITH RESTRICTED ZEROS
    Rather, Nisar A.
    Gulzar, Suhail
    Bhat, Aijaz A.
    ARCHIVUM MATHEMATICUM, 2022, 58 (03): : 159 - 167